Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (8): 20220122.doi: 10.7503/cjcu20220122
• Review • Previous Articles Next Articles
LIU Suyu1, DING Fei2, LI Qian2,3(), FAN Chunhai2, FENG Jing4(
)
Received:
2022-03-01
Online:
2022-08-10
Published:
2022-03-24
Contact:
LI Qian,FENG Jing
E-mail:liqian2018@sjtu.edu.cn;fengjing71921@163.com
Supported by:
CLC Number:
TrendMD:
LIU Suyu, DING Fei, LI Qian, FAN Chunhai, FENG Jing. Azobenzene-integrated DNA Nanomachine[J]. Chem. J. Chinese Universities, 2022, 43(8): 20220122.
1 | Becker D., Konnertz N., Böhning M., Schmidt J., Thomas A., Chem. Mater., 2016, 28(23), 8523—8529 |
2 | Hartley G. S., Nature, 1937, 140(3537), 281 |
3 | Aggarwal K., Kuka T. P., Banik M., Medellin B. P., Ngo C. Q., Xie D., Fernandes Y., Dangerfield T. L., Ye E., Bouley B., Johnson K. A., Zhang Y. J., Eberhart J. K., Que E. L., J. Am. Chem. Soc., 2020, 142(34), 14522—14531 |
4 | Weis P., Wu S., Macromol. Rapid Commun., 2018, 39(1), 1700220 |
5 | Kou B., Tan L. H., Wang C. C., Xiao S. J., Prog. Chem., 2014, 26(10), 1720—1730 |
寇波, 谈玲华, 王倡春, 肖守军. 化学进展, 2014, 26(10), 1720—1730 | |
6 | Thambi T., Park J. H., Lee D. S., Chem. Commun., 2016, 52(55), 8492—8500 |
7 | Huang C., Tan W. L., Zheng J., Zhu C., Huo J., Yang R. H., ACS Appl. Mater. Interfaces, 2019, 11(29), 25740—25749 |
8 | Smith B. R., Gambhir S. S., Chem. Rev., 2017, 117(3), 901—986 |
9 | Kumari R., Sunil D., Ningthoujam R. S., J. Control. Release, 2020, 319, 135—156 |
10 | Tian Y., Li Y. F., Jiang W. L., Zhou D. Y., Fei J. J., Li C. Y., Anal. Chem., 2019, 91(16), 10901—10907 |
11 | Wang M. F., Zhao Y. J., Chang M. Y., Ding B. B., Deng X. R., Cui S. Z., Hou Z. Y., Lin J., ACS Appl. Mater. Interfaces, 2019, 11(51), 47730—47738 |
12 | Wegener M., Hansen M. J., Driessen A. J. M., Szymanski W., Feringa B. L., J. Am. Chem. Soc., 2017, 139(49), 17979—17986 |
13 | Goldman N., Bertone P., Chen S. Y., Dessimoz C., LeProust E. M., Sipos B., Birney E., Nature, 2013, 494(7435), 77—80 |
14 | Ge Z. L., Li Q., Fan C. H., Chem. Res. Chinese Universities, 2020, 36(1), 1—9 |
15 | Rothemund P. W. K., Nature, 2006, 440(7082), 297—302 |
16 | Liu M. H., Fu J. L., Hejesen C., Yang Y. H., Woodbury N. W., Gothelf K., Liu Y., Yan H., Nat. Commun., 2013, 4, 2127 |
17 | Feng X. P., Zhang H., New Chem. Mater., 2016, 44(4), 29—31 |
冯西平, 张宏. 化工新型材料, 2016, 44(4), 29—31 | |
18 | Nishioka H., Liang X. G., Kato T., Asanuma H., Angew. Chem. Int. Ed., 2012, 51(5), 1165—1168 |
19 | Basu S., Johl R., Pacelli S., Gehrke S., Paul A., ACS Macro. Letters, 2020, 9(9), 1230—1236 |
20 | Zhao Y., Cao W. Q., Liu Y., Chem. J. Chinese Universities, 2020, 41(5), 909—923 |
赵宇, 曹琬晴, 刘阳. 高等学校化学学报, 2020, 41(5), 909—923 | |
21 | Hu Y. Q., Wang Y., Yan J. H., Wen N. C., Xiong H. J., Cai S. D., He Q. Y., Peng D. M., Liu Z. B., Liu Y. F., Adv. Sci., 2020, 7(14), 2000557 |
22 | Fan C. H., Li J., Science & Technology Vision, 2021, (36), 6—11 |
樊春海, 李江. 科技视界, 2021, (36), 6—11 | |
23 | Fan C. H., Chin. Sci. Bull., 2019, 64(10), 987—988 |
樊春海. 科学通报, 2019, 64(10), 987—988 | |
24 | Deiana M., Pokladek Z., Olesiak⁃Banska J., Młynarz P., Samoc M., Matczyszyn K., Sci. Rep., 2016, 6, 28605 |
25 | Dohno C., Uno S. N., Nakatani K., J. Am. Chem. Soc., 2007, 129(39), 11898—11899 |
26 | Liu K., Jin Y., Liang J. G., Wu Y., Chem. J. Chinese Universities, 2021, 42(11), 3477—3492 |
刘珂, 靳宇, 梁建功, 吴园. 高等学校化学学报, 2021, 42(11), 3477—3492 | |
27 | Zinchenko A. A., Tanahashi M., Murata S., ChemBioChem, 2012, 13(1), 105—111 |
28 | Le Ny A. L. M., Lee C. T., J. Am. Chem. Soc., 2006, 128(19), 6400—6408 |
29 | Schimka S., Santer S., Mujkić⁃Ninnemann N. M., Bléger D., Hartmann L., Wehle M., Lipowsky R., Santer M., Biomacromolecules, 2016, 17(6), 1959—1968 |
30 | Bergen A., Rudiuk S., Morel M., Le Saux T., Ihmels H., Baigl D., Nano Lett., 2016, 16(1), 773—780 |
31 | Kong D. J., Mo M. W., Ji H. M., Lei H. J., Chen L., Li Y. H., He Y. J., Tang X. J., Zheng P. W., Wu L., Sci. Sin. Chim., 2018, 48(7), 698—711 |
孔德佳, 莫蒙武, 季禾茗, 雷华军, 陈露, 李元昊, 何裕建, 汤新景, 郑鹏武, 吴丽. 中国科学: 化学, 2018, 48(7), 698—711 | |
32 | Zhou F., Fu T., Huang Q., Kuai H. L., Mo L. T., Liu H. L., Wang Q. Q., Peng Y. B., Han D. M., Zhao Z. L., Fang X. H., Tan W. H., J. Am. Chem. Soc., 2019, 141(46), 18421—18427 |
33 | Wu L., He Y. J., Tang X. J., Bioconjugate Chem., 2015, 26(6), 1070—1079 |
34 | Asanuma H., Ito T., Komiyama M., Tetrahedron Lett., 1998, 39(49), 9015—9018 |
35 | Asanuma H., Ito T., Yoshida T., Liang X. G., Komiyama M., Angew. Chem. Int. Ed., 1999, 38(16), 2393—2395 |
36 | Nishioka H., Liang X. G., Asanuma H., Chem. Eur. J., 2010, 16(7), 2054—2062 |
37 | Ito H., Liang X. G., Nishioka H., Asanuma H., Org. Biomol. Chem., 2010, 8(24), 5519—5524 |
38 | Stafforst T., Hilvert D., Angew. Chem. Int. Ed., 2010, 49(51), 9998—10001 |
39 | Asanuma H., Liang X. G., Nishioka H., Matsunaga D., Liu M. Z., Komiyama M., Nat. Protoc., 2007, 2(1), 203—212 |
40 | Biswas M., Burghardt I., Biophys. J., 2014, 107(4), 932—940 |
41 | Li J., Wang X. Y., Liang X. G., Chem. Asian J., 2014, 9(12), 3344—3358 |
42 | Kou B., Guo X., Xiao S. J., Liang X. G., Small, 2013, 9(23), 3939—3943 |
43 | Goldau T., Murayama K., Brieke C., Steinwand S., Mondal P., Biswas M., Burghardt I., Wachtveitl J., Asanuma H., Heckel A., Chem. Eur. J., 2015, 21(7), 2845—2854 |
44 | Wang R. W., Jin C., Zhu X. Y., Zhou L. Y., Xuan W. J., Liu Y., Liu Q. L., Tan W. H., J. Am. Chem. Soc., 2017, 139(27), 9104—9107 |
45 | Keiper S., Vyle J. S., Angew. Chem. Int. Ed., 2006, 45(20), 3306—3309 |
46 | Freeman C., Vyle J. S., Heaney F., RSC Adv., 2013, 3(6), 1652—1655 |
47 | Lubbe A. S., Szymanski W., Feringa B. L., Chem. Soc. Rev., 2017, 46(4), 1052—1079 |
48 | Mori S., Morihiro K., Obika S., Molecules, 2014, 19(4), 5109—5118 |
49 | Mori S., Morihiro K., Kasahara Y., Tsunoda S. I., Obika S., Chemosensors, 2015, 3(2), 36—54 |
50 | Patnaik S., Kumar P., Garg B. S., Gandhi R. P., Gupta K. C., Bioorg. Med. Chem., 2007, 15(24), 7840—7849 |
51 | Wu L., Koumoto K., Sugimoto N., Chem. Commun., 2009,(14), 1915—1917 |
52 | Wu L., Wu Y., Jin H. W., Zhang L. R., He Y. J., Tang X. J., MedChemComm, 2015, 6(3), 461—468 |
53 | Kamiya Y., Asanuma H., Acc. Chem. Res., 2014, 47(6), 1663—1672 |
54 | Murayama K., Asanuma H., ChemBioChem, 2017, 18(1), 142—149 |
55 | Asano T., Okada T., J. Org. Chem., 1986, 51(23), 4454—4458 |
56 | Fujii T., Kashida H., Asanuma H., Chem. Eur. J., 2009, 15(39), 10092—10102 |
57 | Liang X. G., Takenaka N., Nishioka H., Asanuma H., Chem. Asian J., 2008, 3(3), 553—560 |
58 | Asanuma H., Ishikawa T., Yamano Y., Murayama K., Liang X. G., ChemPhotoChem, 2019, 3(6), 418—424 |
59 | Zhang L., Linden G., Vazquez O., Beilstein. J. Org. Chem., 2019, 15, 2500—2508 |
60 | Hammill M. L., Islam G., Desaulniers J. P., ChemBioChem, 2020, 21(16), 2367—2372 |
61 | Ge Z. L., Fan C. H., Yan H., Chin. Sci. Bull., 2014, 59(2), 146—157 |
葛志磊, 樊春海, YAN Hao. 科学通报, 2014, 59(2), 146—157 | |
62 | Zhang C., Chen Y. G., Liu Y., Chem. J. Chinese Universities, 2008, 29(9), 1797—1800 |
张超, 陈银广, 刘燕. 高等学校化学学报, 2008, 29(9), 1797—1800 | |
63 | Rickles F. R., Patierno S., Fernandez P. M., Chest, 2003, 124(3, Supplement), 58S—68S |
64 | Dagliyan O., Shirvanyants D., Karginov A. V., Ding F., Fee L., Chandrasekaran S. N., Freisinger C. M., Smolen G. A., Huttenlocher A., Hahn K. M., Dokholyan N. V., Proc. Natl. Acad. Sci. USA, 2013, 110(17), 6800—6804 |
65 | Kim Y. M., Phillips J. A., Liu H. P., Kang H. Z., Tan W. H., Proc. Natl. Acad. Sci. USA, 2009, 106(16), 6489—6494 |
66 | Hu X. Y., Guo D. S., Chem. Res. Chinese Universities, 2021, 37(3), 619—620 |
67 | Wang X. L., Huang J., Zhou Y. Y., Yan S. Y., Weng X. C., Wu X. J., Deng M. G., Zhou X. A., Angew. Chem. Int. Ed., 2010, 49(31), 5305—5309 |
68 | Tian T., Song Y. Y., Wang J. Q., Fu B. S., He Z. Y., Xu X. Q., Li A. L., Zhou X., Wang S. R., Zhou X., J. Am. Chem. Soc., 2016, 138(3), 955—961 |
69 | You M. X., Wang R. W., Zhang X. B., Chen Y., Wang K. L., Peng L., Tan W. H., ACS Nano, 2011, 5(12), 10090—10095 |
70 | Chen Y. H., Ke G. L., Ma Y. L., Zhu Z., Liu M. H., Liu Y., Yan H., Yang C. J., J. Am. Chem. Soc., 2018, 140(28), 8990—8996 |
71 | Wheeldon I., Minteer S. D., Banta S., Barton S. C., Atanassov P., Sigman M., Nat. Chem., 2016, 8(4), 299—309 |
72 | Dahl G., Phil. Trans. R. Soc. B., 2015, 370(1672), 20140191 |
73 | Li P., Xie G. H., Liu P., Kong X. Y., Song Y. L., Wen L. P., Jiang L., J. Am. Chem. Soc., 2018, 140(47), 16048—16052 |
74 | Wang C. L., Di Z. H., Fan Z. T., Li L. L., Chem. Res. Chinese Universities, 2020, 36(2), 268—273 |
75 | Nagel G., Szellas T., Kateriya S., Adeishvili N., Hegemann P., Bamberg E., Biochem. Soc. Trans., 2005, 33(Part4), 863—866 |
76 | Li P., Xie G. H., Kong X. Y., Zhang Z., Xiao K., Wen L. P., Jiang L., Angew. Chem. Int. Ed., 2016, 55(50), 15637—15641 |
77 | Shi L., Mu C., Gao T., Chai W., Sheng A., Chen T., Yang J., Zhu X., Li G., J. Am. Chem. Soc., 2019, 141(20), 8239—8243 |
78 | Yuan Q., Zhang Y. F., Chen T., Lu D. Q., Zhao Z. L., Zhang X. B., Li Z. X., Yan C. H., Tan W. H., ACS Nano, 2012, 6(7), 6337—6344 |
79 | Zhang Y., Song G. B., He Y. L., Zhang X. B., Liu Y., Ju H. X., Angew. Chem. Int. Ed., 2019, 58(50), 18207—18211 |
80 | Modi S., Swetha M. G., Goswami D., Gupta G. D., Mayor S., Krishnan Y., Nat. Nanotech., 2009, 4(5), 325—330 |
81 | Bandy T. J., Brewer A., Burns J. R., Marth G., Nguyen T., Stulz E., Chem. Soc. Rev., 2011, 40(1), 138—148 |
82 | Zhou M. G., Liang X. G., Mochizuki T., Asanuma H., Angew. Chem. Int. Ed., 2010, 49(12), 2167—2170 |
83 | Skugor M., Valero J., Murayama K., Centola M., Asanuma H., Famulok M., Angew. Chem. Int. Ed., 2019, 58(21), 6948—6951 |
84 | Frantz C., Stewart K. M., Weaver V. M., J. Cell Sci., 2010, 123(24), 4195—4200 |
85 | Sethi S., Hidaka K., Sugiyama H., Endo M., Angew. Chem. Int. Ed., 2021, 60(37), 20342—20349 |
86 | Zhao Q. H., Cao F. H., Luo Z. H., Huck W. T. S., Deng N. N., Angew. Chem. Int. Ed., 2022, 61(14), e202117500 |
[1] | GAO Jian, FENG Yiyu, FANG Wenyu, WANG Hui, GE Jing, FENG Wei. Alkane Grafted Phase Change Azobenzene Materials Based on Low Temperature Heat Release [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220146. |
[2] | WANG Gaobo, MA Jing. Binding Selectivity Between Diazobenzene and Different Nucleophilic Reagents: Covalent and Noncovalent Interactions [J]. Chem. J. Chinese Universities, 2021, 42(7): 2238. |
[3] | LI Shanshan, ZHAO Wenjuan, LI Hui, FANG Qianrong. A Photoresponsive Azobenzene-functionalized Covalent Organic Framework [J]. Chem. J. Chinese Universities, 2020, 41(6): 1384. |
[4] | ZHAO Ruiyang,YU Chunyan,HAN Jishu,FU Yunlei,LI Ming,HU Dehua,LIU Fusheng. Preparation of Photo-responsive Film by Electrochemical Deposition Method and the Application in Optical Information Storage† [J]. Chem. J. Chinese Universities, 2019, 40(2): 358. |
[5] | LI Zhiming, DING Qiang, GU Xiaojun, XIN Hong, BAI Binglian, LI Min. Organogel and Photo-responsive Behaviour of Hydrazide Derivatives Containing Azobenzene Groups† [J]. Chem. J. Chinese Universities, 2017, 38(9): 1695. |
[6] | YAN Chao, XIAO Yulong, DAI Heng, CHENG Xiaohong. Synthesis and Properties of Symmetric Azobenzene Derivative† [J]. Chem. J. Chinese Universities, 2016, 37(3): 475. |
[7] | AI Hui, LI Wen, ZHANG Bin, LI Bao, WU Lixin. Light Modulated Host-guest Recognition of Organic Modified Polyoxometalate Complex† [J]. Chem. J. Chinese Universities, 2015, 36(11): 2297. |
[8] | ZHANG Qingzhong, ZHANG Junmei, LIU Yuping, REN Xiao, HUANG Wei. Synthesis and Characterization of Electro-optic Materials Based on Intermolecular Lateral Hydrogen Bonding† [J]. Chem. J. Chinese Universities, 2015, 36(10): 2053. |
[9] | JIANG Hongbo, GONG Chengbin, WANG Qiang, TANG Qian, MA Xuebing. Synthesis and Characterization of Novel Photo- and pH-Responsive Poly[8-1] [J]. Chem. J. Chinese Universities, 2014, 35(9): 2043. |
[10] | FAN Dongli, ZHAI Yan, ZHANG Yan, TU Wei, HUANG Yaodong. Synthesis and Properties of Photoresponsive Organogels Based on Azobenzene Derivatives [J]. Chem. J. Chinese Universities, 2014, 35(11): 2447. |
[11] | GAO Chao, YANG Yu-Zhu, ZHANG Guang-Bo, PENG Jing-Dong, TANG Qian, GONG Cheng-Bin. Preparation and Characterization of Photoresponsive Organic-inorganic Hybrid Molecularly Imprinted Polymers [J]. Chem. J. Chinese Universities, 2012, 33(12): 2801. |
[12] | HE Li-Bing, BIAN Xiu-Jie, CHAO Dan-Ming, LI Zhi-Liang, LI Ye, WANG Ce, LIU Xin-Cai*. Synthesis and Characterization of Novel Electroactive Polyamide with Azo Groups in the Backbone [J]. Chem. J. Chinese Universities, 2011, 32(8): 1664. |
[13] | LI Xiang-Liang, TANG Qian, GUO Cong-Cong, MA Rong, CHANG Wen-Bin, GONG Cheng-Bin*. Synthesis and Properties of Photoresponsive Polymer Materials Containing Fluoro-Azobenzene [J]. Chem. J. Chinese Universities, 2011, 32(11): 2706. |
[14] | WANG Yang, TANG Xian-Zhong*, TANG Xiang, WANG Yun-Long, ZHAO Shuai. Synthesis and Properties of Two Novel Azobenzene Chromophores [J]. Chem. J. Chinese Universities, 2011, 32(10): 2327. |
[15] | ZHANG Chao-Hui, ZHAO Xiao-Gang, LIU Yan-Mei, WANG Ce, ZHANG Wan-Jin*. Preparation and Photoresponse of Nonliquid Crystal Poly(amic acid) Containing Azobenzene [J]. Chem. J. Chinese Universities, 2010, 31(3): 432. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||