Chem. J. Chinese Universities ›› 2015, Vol. 36 ›› Issue (7): 1344.doi: 10.7503/cjcu20150094
• Physical Chemistry • Previous Articles Next Articles
GU Dongmei, ZHANG Jianzhao, ZHANG Ji, LI Haibin, GENG Yun*(), SU Zhongmin*(
)
Received:
2015-01-27
Online:
2015-07-10
Published:
2015-06-11
Contact:
GENG Yun,SU Zhongmin
E-mail:gengy575@nenu.edu.cn;zmsu@nenu.edu.cn
Supported by:
CLC Number:
TrendMD:
GU Dongmei, ZHANG Jianzhao, ZHANG Ji, LI Haibin, GENG Yun, SU Zhongmin. Different Electron-withdrawing Groups in π Spacers Effect on the Performance of Dye-sensitized Solar Cells Based on Triphenylamine-cyanoacrylic Acid Dyes†[J]. Chem. J. Chinese Universities, 2015, 36(7): 1344.
Fig.2 Total(a) and Partial(b) density of state(DOS) for dye 1 adsorbed on (TiO2)38 clusterThe dash line intercepts with the energy axis correspond to calculated ECB edges.
Dye | State | Main configurationa | λmax/nm(eV) | εb/ (L·mol-1·cm-1) | λmax/ nm(eV)[ | ΔGinj/eV |
---|---|---|---|---|---|---|
1 | S0→S1 | HOMO→LUMO(76%), HOMO-1→LUMO(14%) | 426(2.91) | 137506 | 438(2.33) | 1.20 |
2 | S0→S1 | HOMO→LUMO(78%), HOMO-1→LUMO(12%) | 451(2.75) | 128008 | 441(2.29) | 0.96 |
3 | S0→S1 | HOMO→LUMO(78%), HOMO-1→LUMO(12%) | 451(2.75) | 129357 | 444(2.28) | 0.95 |
4 | S0→S1 | HOMO→LUMO(71%), HOMO-1→LUMO(13%) | 417(2.97) | 108957 | 425(2.34) | 1.23 |
5 | S0→S1 | HOMO→LUMO(82%), HOMO-1→LUMO(10%) | 480(2.58) | 122658 | 500(2.11) | 0.73 |
Table 1 Computed maximum absorption wavelengths(λmax), the molar absorption coefficient(ε), and the nature of the transitions of dyes 1—5 corresponding to S0 →S1 in CH2Cl2 solution by TD-PCM-CAM-B3LYP/6-31G* method based on B3LYP/6-31G* geometries, and the electron injection driving force(ΔGinj)
Dye | State | Main configurationa | λmax/nm(eV) | εb/ (L·mol-1·cm-1) | λmax/ nm(eV)[ | ΔGinj/eV |
---|---|---|---|---|---|---|
1 | S0→S1 | HOMO→LUMO(76%), HOMO-1→LUMO(14%) | 426(2.91) | 137506 | 438(2.33) | 1.20 |
2 | S0→S1 | HOMO→LUMO(78%), HOMO-1→LUMO(12%) | 451(2.75) | 128008 | 441(2.29) | 0.96 |
3 | S0→S1 | HOMO→LUMO(78%), HOMO-1→LUMO(12%) | 451(2.75) | 129357 | 444(2.28) | 0.95 |
4 | S0→S1 | HOMO→LUMO(71%), HOMO-1→LUMO(13%) | 417(2.97) | 108957 | 425(2.34) | 1.23 |
5 | S0→S1 | HOMO→LUMO(82%), HOMO-1→LUMO(10%) | 480(2.58) | 122658 | 500(2.11) | 0.73 |
Fig.5 Schematic representation of calculated the ground state oxidation potentials(Edye) and the excited(Edye*) state oxidation potential values of dyes 1—5
[1] | O’Regan B., Grätzel M., Nature, 1991, 353, 737—740 |
[2] | Liang M., Chen J., Chem. Soc. Rev., 2013, 42, 3453—3488 |
[3] | Kitamura T., Ikeda M., Shigaki K., Inoue T., Anderson N. A., Ai X., Lian T., Yanagida S., Chem. Mate., 2004, 16, 1806—1812 |
[4] | Tian H., Yang X., Chen R., Zhang R., Hagfeldt A., Sun L., J. Phys. Chem., C, 2008, 112, 11023—11033 |
[5] | Grätzel. M., Acc. Chem. Res., 2009, 42, 1788—1798 |
[6] | Ning Z., Fu Y., Tian H., Energy Environ. Sci., 2010, 3, 1170—1181 |
[7] | Preat J., Jacquemin D., Michaux C., Perpète E. A., Chem. Phys., 2010, 376, 56—68 |
[8] | Zhang J., Li H. B., Sun S. L., Geng Y., Wu Y., Su Z. M., J. Mater. Chem., 2012, 22, 568—576 |
[9] | Preat J., Michaux C., Jacquemin D., Perpète E. A., J. Phys. Chem. C, 2009, 113, 16821—16833 |
[10] | Tomasi J., Mennucci B., Cammi R., Chem. Rev., 2005, 105, 2999—3094 |
[11] | Li H. B., Zhang J., Wu Y., Jin J. L., Duan Y. A., Su Z. M., Geng Y., Dyes Pigm., 2014, 108, 106—114 |
[12] | Jiao Y., Ma W., Meng S., Chem. Phys. Lett., 2013, 586, 97—99 |
[13] | Gorelsky S. I., Lever A. B. P., J. Org. Chem., 2001, 635, 187—196 |
[14] | Pastore M., Mosconi E., de Angelis F., J. Phys. Chem., C, 2012, 116, 5965—5973 |
[15] | Newton M. D., Kestner N. R., Chem. Phys. Lett., 1983, 94, 198—201 |
[16] | Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision D01: Gaussian, Inc., Wallingford CT, 2013 |
[17] | Li H. B., Zhang J. Z., Zhang J., Wu Y., Duan Y. A., Su Z. M., Geng Y., J. Mol. Model., 2014, 20, 1—12 |
[18] | Zhang J., Kan Y. H., Li H. B., Geng Y., Wu Y., Duan Y. A., Su Z. M., J. Mol. Model., 2013, 19, 1597—1604 |
[19] | Zhang J., Kan Y. H., Li H. B., Geng Y., Wu Y., Su Z. M., Dyes Pigm., 2012, 95, 313—321 |
[20] | Zhang J., Li H. B., Geng Y., Wen S. Z., Zhong R. L., Wu Y., Fu Q., Su Z. M., Dyes Pigm., 2013, 99, 127—135 |
[21] | Zhang J., Li H. B., Sun S. L., Geng Y., Wu Y., Su Z. M., J. Mater. Chem., 2012, 22, 568 |
[22] | Zhang J., Li H. B., Zhang J. Z., Wu Y., Geng Y., Fu Q., Su Z. M., J. Mater. Chem. A, 2013, 1, 14000—14007 |
[23] | Zhang J. Z., Zhang J., Li H. B., Wu Y., Xu H. L., Zhang M., Geng Y., Su Z. M., J. Power Sources, 2014, 267, 300—308 |
[24] | Zhang J., Zhang J. Z., Li H. B., Wu Y., Geng Y., Su Z. M., Phys. Chem. Chem. Phys., 2014, 16, 24994—25003 |
[25] | Vittadini A., Selloni A., Rotzinger F. P., Grätzel M., J. Phys. Chem., B, 2000, 104, 1300—1306 |
[26] | Persson P., Bergström R., Lunell S., J. Phys. Chem., B, 2000, 104, 10348—10351 |
[27] | Wang Z. S., Hara K., Dan Oh. Y., Kasada C., Shinpo A., Suga S., Arakawa H., Sugihara H., J. Phys. Chem., B, 2005, 109, 3907—3914 |
[28] | Srinivas K., Yesudas K., Bhanuprakash K., Rao V. J., Giribabu L., J. Phys. Chem., C, 2009, 113, 20117—20126 |
[29] | Ronca E., Pastore M., Belpassi L., Tarantelli F., De Angelis F., Energy Environ. Sci., 2013, 6, 183—193 |
[30] | Su X., Zhang J., Wu Y., Geng Y., Su Z. M., Chem. J. Chinese Universities, 2013, 34(8), 1945—1952 |
(苏欣, 张吉, 吴勇, 耿允, 苏忠民. 高等学校化学学报,2013, 34(8), 1945—1952) | |
[31] | O’Regan B. C., Walley K., Juozapavicius M., Anderson A., Matar F., Ghaddar T., Zakeeruddin S. M., Klein C., Durrant J. R., J. Am. Chem. Soc., 2009, 131, 3541—3548 |
[32] | Robson K.C. D., Hu K., Meyer G. J., Berlinguette C. P., J. Am. Chem. Soc., 2013, 135, 1961—1971 |
[33] | Zhang P. P., Zhu F., Ai X. C., Chem. J. Chinese Universities, 2013, 34(10), 418—422 |
(张盼盼, 朱枫, 艾希成. 高等学校化学学报,2013, 34(10), 2418—2422) | |
[34] | Pastore M., Mosconi E., De Angelis F., Grätzel M., J. Phys. Chem., C, 2010, 114, 7205—7212 |
[35] | Zhang J., Li H. B., Wu Y., Geng Y., Duan Y. A., Liao Y., Su Z. M., Chem. J. Chinese Universities, 2011, 32(6), 1343—1348 |
(张吉, 李海斌, 吴勇, 耿允, 段雨爱, 廖奕, 苏忠民. 高等学校化学学报,2011, 32(6), 1343—1348) | |
[36] | Tian H., Sun L., J. Mater. Chem., 2011, 21, 10592 |
[37] | Kim B. G., Chung K., Kim J., Chem. Eur. J., 2013, 19, 5220—5230 |
[38] | Clifford J. N., Martinez-Ferrero E., Viterisi A., Palomares E., Chem. Soc. Rev., 2011, 40, 1635—1646 |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[4] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[5] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[7] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[8] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[9] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[10] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[11] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
[12] | YANG Yiying, ZHU Rongxiu, ZHANG Dongju, LIU Chengbu. Theoretical Study on Gold-catalyzed Cyclization of Alkynyl Benzodioxin to 8-Hydroxy-isocoumarin [J]. Chem. J. Chinese Universities, 2021, 42(7): 2299. |
[13] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
[14] | ZHENG Ruoxin, ZHANG Igor Ying, XU Xin. Development and Benchmark of Lower Scaling Doubly Hybrid Density Functional XYG3 [J]. Chem. J. Chinese Universities, 2021, 42(7): 2210. |
[15] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||