Chemical Journal of Chinese Universities ›› 2014, Vol. 35 ›› Issue (6): 1277-1285.doi: 10.7503/cjcu20140021
• Physical Chemistry • Previous Articles Next Articles
CHEN Ying1, XING Chen1, JI Shenglun1, LIANG Hongbao2,*(), ZHANG Hongyu3, CHEN Yan4
Received:
2014-01-09
Online:
2014-06-10
Published:
2014-03-24
Contact:
LIANG Hongbao
E-mail:xchen3294@126.com
Supported by:
CLC Number:
CHEN Ying, XING Chen, JI Shenglun, LIANG Hongbao, ZHANG Hongyu, CHEN Yan. One-step Preparation of H3PW12O40/Bi2WO6 Nano-photocatalysts by Microwave Liquid Process and Its Photocatalysis Denitrification Properties†[J]. Chemical Journal of Chinese Universities, 2014, 35(6): 1277-1285.
w(H3PW12O40)(%) | 0 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|
Denitrification rate(%) | 80.78 | 82.29 | 85.96 | 92.63 | 89.21 | 86.46 |
Denitrification rate(without light)(%) | 22.83 | 27.69 | 30.24 | 36.21 | 31.18 | 24.83 |
Table 1 Results of denitrification performance of H3PW12O40/Bi2WO6(microwave power: 800 W; reaction time: 90 min) with different loadings of H3PW12O40 with or without light(photocatalytic time: 60 min)
w(H3PW12O40)(%) | 0 | 5 | 10 | 15 | 20 | 25 |
---|---|---|---|---|---|---|
Denitrification rate(%) | 80.78 | 82.29 | 85.96 | 92.63 | 89.21 | 86.46 |
Denitrification rate(without light)(%) | 22.83 | 27.69 | 30.24 | 36.21 | 31.18 | 24.83 |
Fig.11 Denitrification performance of H3PW12O40/Bi2WO6 catalysts prepared under 800 W microwave power for different time and with different H3PW12O40 loadingsXenon lamp: 500 W; photocatalytic time: 60 min; mcatalyst/msimulated oil: 1/300. Sythestic time of catalysts/min: a. 10; b. 30; c. 60; d. 90; e. 120.
Fig.12 Denitrification rate of simulated oil with di-fferent addition amount of 15%H3PW12O40/Bi2WO6 and photocatalytic timeXenon lamp: 500 W; mcatalysts/msimulated oil: a. 1/500; b. 1/400; c. 1/300; d. 1/200.
Fig.13 Denitrification performance of catalysts for different cycle timesXenon lamp: 500 W; photocatalytic time: 60 min; mcatalysts/msimulated oil: 1/300.
[1] | Yosuke S., Ki-Hyouk C., Yozo K., Isao M., Applied Catalysis. B: Environmental, 2004, 53(3), 169—174 |
[2] | Song H., Xu X. W., Dai M., Song H. L., Chem. J. Chinese Universities, 2013, 34(11), 2609—2616 |
(宋华, 徐晓伟, 代敏, 宋华林.高等学校化学学报, 2013,34(11), 2609—2616) | |
[3] | Soni K. K., Chandra M. K., Dalai A. K., Adjaye J., Microporous and Mesoporous Materials, 2012,152, 224—234 |
Soni K. K., Chandra M. K., Dalai A. K., Adjaye J., Microporous and Mesoporous Materials, 2012,152, 224—234 | |
[4] | Manabuk, Seijit, Katsuakil, Journal of the Japan Ptroleum Institute, 2007, 50(1), 44—52 |
[5] | Song H., Guo Y. T., Li F., Yu H. K., Acta Physico-Chimica Sinica, 2010, 26(9), 2461—2467 |
(宋华, 郭云涛, 李锋, 于洪坤.物理化学学报, 2010,26(9), 2461—2467) | |
[6] | Fu H. B., Pan C. S., Yao W. Q., Zhu Y. F., The Journal of Physical Chemistry. B: Condensed Matter, Materials, Surfaces, Interfaces and Biophysical, 2005, 109(47), 22432—22439 |
[7] | Rafiee E., Shahbazi F., Joshaghani M., Tork F., J. Mol. Catal. A: Chem., 2005, 242(1/2), 129—134 |
[8] | Matsuda A., Daiko Y., Ishida T., Tadanaga K., Tatsumisago M., Solid State Ionics, 2007, 178(7—10), 709—712 |
[9] | Hisao H., Etsuko H., Kazuhide K., Hisahiro E., Takashi I., Journal of Molecular Catalysis. A: Chemical, 2004, 211(1/2), 35—41 |
[10] | Gkika E., Troupis A., Hiskia A., Papaconstantinou E., Applied Catalysis B: Environmental, 2006, 62(1/2), 28—34 |
[11] | Kudo A., Hijii S., Chem. Lett., 1999, 28(10), 1103—1104 |
[12] | Tang J. W., Zou Z. G., Ye J. H., Catal. Lett., 2004, 92(53), 256—270 |
[13] | McDowell N. A., Knight K. S., Lightfoot P., Chem.-Eur. J., 2006, 12(5), 1493—1499 |
[14] | Chen Y., Li H., Liang Y. N., Qi X. F., Mao B. B., Acta Petrolei Sinica(Petroleum Processing Section), 2011, 27(6), 910—915 |
(陈颖, 李慧, 梁宇宁, 祁雪峰, 毛贝贝. 石油学报(石油加工), 2011, 27(6), 910—915) | |
[15] | SH/T 0162—1992, Method for the Determination of Basic Nitrogen in Petroleum Products, Sinopec Group, 1992 |
[16] | Zheng Y. Q., Tan G. Q., Bo H. Y., Xia A., Ren H. J., Journal of the Chinese Ceramic Society, 2011, 39(3), 481—485 |
(郑玉芹, 谈国强, 博海洋, 夏傲, 任慧君.硅酸盐学报, 2011,39(3), 481—485) | |
[17] | Ye T. X., Zhang Y. H., Liu J. Y., Ma X. N., Zhang B., Acta Petrolei Sinica(Petroleum Processing Section), 2010, 26(1), 104—109 |
(叶天旭, 张予辉, 刘京燕, 马雪妮, 张斌. 石油学报(石油加工), 2010, 26(1), 104—109) | |
[18] | Song J. M., Wang H., Li Y. P., Zhu X. M., Li L. L., Yang J., Jin B. K., Science China(Chemistry), 2013, 43(2), 163—170 |
(宋继梅, 王红, 李亚平, 朱绪敏, 李亮亮, 杨捷, 金葆康. 中国科学(化学), 2013, 43(2), 163—170) | |
[19] | Guo D. S., Ma Z. F., Jiang Q. Z., Ye W. D., Li C. B., Chinese Journal of Catalysis, 2007, 28(7), 627—634 |
(郭岱石, 马紫峰, 蒋淇忠, 叶伟东, 李春波, 催化学报, 2007, 28(7), 627—634) | |
[20] | Dambournet D., Leclerc H., Vimont A., Lavalley J. C., Nickkho-Amiry M., Winfield J. M., Physical Chemistry Chemical Physics, 2009, 11(9), 1369—1379 |
[21] | Chen Y., Mao B. B., Zhao L. C., Wang L., Li H., Acta Petrolei Sinica(Petroleum Processing Section), 2012, 28(2), 303—309 |
(陈颖, 毛贝贝, 赵连成, 王磊, 李慧. 石油学报(石油加工), 2012, 28(2), 303—309) | |
[22] | Gui S. M, Zhang W. D., Su Q. X., Chen C. H., Journal of Solid State Chemistry, 2011, 184(8), 1977—1982 |
[23] | Liu Y., Ji H. W., Zhou D. F., Zhu X. F., Li Z. H., Chem. J. Chinese Universities, 2014, 35(1), 19—25 |
(刘阳, 季宏伟, 周德凤, 朱晓飞, 李朝晖.高等学校化学学报, 2014,35(1), 19—25) | |
[24] | Alexander W. S., Christopher S. G., Wei Q., Mostafa A. E., Ye C., Valeria T. M., Kenneth S., Nano Letters, 2006, 6(9), 1940—1949 |
[25] | Sun Y. P., Zhao L., Zhao J. L., Hou Y. P., Chong F. G., Liang Y., Chemical Engineering of Chinese Universities, 2006, 20(4), 554—558 |
(孙亚萍, 赵靓, 赵景联, 侯永平, 种法国, 梁勇.高校化学工程学报, 2006,20(4), 554—558) | |
[26] | Zhou L., Wang W. Z., Zhang L. S., Journal of Molecular Catalysis A: Chemical, 2007, 268, 195—200 |
[1] | PENG Shaoqin, LI Ziqin, HUANG Mingtao, LI Yuexiang. Preparation of Zn2In2S5 Photocatalyst by Post-treatment with Hydrochloric Acid for Effective Photocatalytic Hydrogen Evolution† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1677-1683. |
[2] | YU Renpeng, HAN Mei, ZHANG Mengyao, LIU Jianfang, LI Moxia, HU Jiawen. Fractal, Plasmonic Black Gold for Hot Electron Catalysis† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1638-1644. |
[3] | ZHU Yuxin, OUYANG Jie, SONG Yanhua, TANG Sheng, CUI Yanjuan. Preparation of Boron and Iodine co-Doped Carbon Nitride and Its Performance in Photocatalytic Hydrogen Evolution from Water† [J]. Chemical Journal of Chinese Universities, 2020, 41(7): 1645-1652. |
[4] | CHENG Rongmin,XU Hong,SHAN Ruiping,ZHAN Conghong. Influential Factors of La-doped Calcium Titanate for Photocatalytic H2 Evolution Under Visible Light [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1345-1351. |
[5] | LIU Siming, WANG Jiannan, YU Shen, LIU Zhan, WANG Zhao, LI Xiaoyun, CHEN Lihua, SU Baolian. Preparation of High-surface-area Hierarchically Porous γ-Al2O3 by One-step Hydrolysis of Metal Alkoxide and Performance [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1208-1217. |
[6] | WANG Rui,XU Mei,XIE Jiawen,YE Shengying,SONG Xianliang. Effects of Hydrothermal Reaction Conditions on the Structure and Properties of Porous Spherical Bi2WO6 Photocatalyst [J]. Chemical Journal of Chinese Universities, 2020, 41(6): 1320-1328. |
[7] | CHENG Shifu,HU Hao,CHEN Bihua,WU Haihong,GAO Guohua,HE Mingyuan. Preparation and Electrochemical Performance of Porous Carbons Prepared from Binary Ionic Liquids [J]. Chemical Journal of Chinese Universities, 2020, 41(5): 1048-1057. |
[8] | ZHOU Chunni, ZHENG Ziang, PENG Wangming, WANG Hongbo, ZHANG Yumin, WANG Liang, XIAO Biao. Microwave Assisted Rhodium-catalyzed C—H Activation/cyclization of Diaryl Phosphoramides and Alkynes † [J]. Chemical Journal of Chinese Universities, 2020, 41(4): 726-734. |
[9] | LIANG Longqi, CHEN Cailing, YU Ying, LI Yuxin, LI Chunguang, SHI Zhan. Synthesis, Luminescence and Cell Imaging Properties of Amino Acid Capped YVO4∶Eu Nanoparticles [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 425-430. |
[10] | ZHAO Peng,ZHANG Jinteng,LIN Yanhong. Excellent Ultraviolet Photocatalytic Efficiency of Mg 2+ Doped ZnO and Analysis on Its Synergetic Effect [J]. Chemical Journal of Chinese Universities, 2020, 41(3): 538-547. |
[11] | LIU Dongmei,SU Yajing,LI Shanshan,XU Qiwei,LI Xia. Transition Metal Coordination Polymers Constructed by 4-(4-Carboxyphenoxy)isophthalic Acid: Synthesis, Crystal Structure, Fluorescence Sensing and Photocatalysis † [J]. Chemical Journal of Chinese Universities, 2020, 41(2): 253-261. |
[12] | ZHAO Yanfeng,SUN Xiaolong,HU Shaozheng,WANG Hui,WANG Fei,LI Ping. Effect of Oxygen on Photocatalytic Nitrogen Fixation Performance of N Vacancy-embedded Graphitic Carbon Nitride † [J]. Chemical Journal of Chinese Universities, 2020, 41(1): 132-139. |
[13] | HUANG He, LI Chunguang, SHI Zhan, FENG Shouhua. Microwave-assisted Hydrothermal Synthesis of Carbon Dots Based on Tyrosine and Their Application in Ion Detection and Bioimaging [J]. Chemical Journal of Chinese Universities, 2019, 40(8): 1579-1585. |
[14] | JI Lei,GUO Fanzuo,WANG Kehan,WANG Lei. Surfactant-assisted Formation of Nanoporous Pt Particles as Co-catalyst Loaded on P25 and Enhanced Photocatalytic Performance† [J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1501-1509. |
[15] | MA Dongwei,TIAN Runsai,LIU Zhenjiang,FENG Yuanyuan,DING Hongyu,FENG Jijun. Microwave-assisted Synthesis and Electrochemical Performance of Na-Doped Cathode Materials Li2-xNaxMnSiO4/C† [J]. Chemical Journal of Chinese Universities, 2019, 40(6): 1280-1287. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||