Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (11): 20220458.doi: 10.7503/cjcu20220458
• Physical Chemistry • Previous Articles Next Articles
DONG Yanhong1, LU Xinhuan1(), YANG Lu1, SUN Fanqi1, DUAN Jingui2, GUO Haotian1, ZHANG Qinjun1, ZHOU Dan1, XIA Qinghua1(
)
Received:
2022-07-01
Online:
2022-11-10
Published:
2022-08-24
Contact:
LU Xinhuan,XIA Qinghua
E-mail:xinhuan003@aliyun.com;xiaqh518@aliyun.com
Supported by:
CLC Number:
TrendMD:
DONG Yanhong, LU Xinhuan, YANG Lu, SUN Fanqi, DUAN Jingui, GUO Haotian, ZHANG Qinjun, ZHOU Dan, XIA Qinghua. Preparation of Bifunctional Metal-organic Framework Materials and Application in Catalytic Olefins Epoxidation[J]. Chem. J. Chinese Universities, 2022, 43(11): 20220458.
Catalyst | Temperature/℃ | Mass loss(%) | Total loss(%) |
---|---|---|---|
ZnCo?MOF?H?110 | 30—250 | 3.8 | 88.0 |
250—400 | 66.4 | ||
400—650 | 17.8 | ||
ZnCo?MOF?D?110 | 30—250 | 3.2 | 88.6 |
250—400 | 62.8 | ||
400—650 | 22.6 | ||
ZnCo?MOF?H?static | 30—250 | 3.7 | 74.2 |
250—400 | 52.1 | ||
400—650 | 18.4 | ||
ZnCo?MOF?D?static | 30—250 | 4.4 | 85.5 |
250—400 | 61.4 | ||
400—650 | 19.7 |
Table 1 Mass loss rates of different catalysts at different temperature stages
Catalyst | Temperature/℃ | Mass loss(%) | Total loss(%) |
---|---|---|---|
ZnCo?MOF?H?110 | 30—250 | 3.8 | 88.0 |
250—400 | 66.4 | ||
400—650 | 17.8 | ||
ZnCo?MOF?D?110 | 30—250 | 3.2 | 88.6 |
250—400 | 62.8 | ||
400—650 | 22.6 | ||
ZnCo?MOF?H?static | 30—250 | 3.7 | 74.2 |
250—400 | 52.1 | ||
400—650 | 18.4 | ||
ZnCo?MOF?D?static | 30—250 | 4.4 | 85.5 |
250—400 | 61.4 | ||
400—650 | 19.7 |
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | α?Pinene | No α?Methylstyrene | 58.3 | 58.3 | 93.5 |
2 | α?Pinene | 6∶1 | 72.6 | 75.4 | 92.9 |
α?Methylstyrene | 92.3 | 93.0 | |||
3 | α?Pinene | 5∶1 | 86.3 | 88.6 | 93.8 |
α?Methylstyrene | 99.8 | 94.3 | |||
4 | α?Pinene | 4∶1 | 82.4 | 85.4 | 92.8 |
α?Methylstyrene | 97.5 | 93.5 | |||
5 | α?Pinene | 3∶1 | 80.5 | 84.6 | 92.4 |
α?Methylstyrene | 96.9 | 93.0 | |||
6 | α?Pinene | 2∶1 | 76.3 | 82.3 | 92.3 |
α?Methylstyrene | 94.3 | 92.7 | |||
7 | α?Pinene | 1∶1 | 68.4 | 78.0 | 91.7 |
α?Methylstyrene | 87.7 | 92.0 | |||
8 | α?Pinene | 1∶2 | 57.9 | 73.3 | 90.1 |
α?Methylstyrene | 81.0 | 90.3 | |||
9 | α?Methylstyrene | No α?Pinene | 65.9 | 65.9 | 89.9 |
Table 2 Effects of different reaction molar ratios on the catalytic activity*
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | α?Pinene | No α?Methylstyrene | 58.3 | 58.3 | 93.5 |
2 | α?Pinene | 6∶1 | 72.6 | 75.4 | 92.9 |
α?Methylstyrene | 92.3 | 93.0 | |||
3 | α?Pinene | 5∶1 | 86.3 | 88.6 | 93.8 |
α?Methylstyrene | 99.8 | 94.3 | |||
4 | α?Pinene | 4∶1 | 82.4 | 85.4 | 92.8 |
α?Methylstyrene | 97.5 | 93.5 | |||
5 | α?Pinene | 3∶1 | 80.5 | 84.6 | 92.4 |
α?Methylstyrene | 96.9 | 93.0 | |||
6 | α?Pinene | 2∶1 | 76.3 | 82.3 | 92.3 |
α?Methylstyrene | 94.3 | 92.7 | |||
7 | α?Pinene | 1∶1 | 68.4 | 78.0 | 91.7 |
α?Methylstyrene | 87.7 | 92.0 | |||
8 | α?Pinene | 1∶2 | 57.9 | 73.3 | 90.1 |
α?Methylstyrene | 81.0 | 90.3 | |||
9 | α?Methylstyrene | No α?Pinene | 65.9 | 65.9 | 89.9 |
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | ![]() | 5∶1 | 87.5 | 88.0 | 93.8 |
![]() | 90.6 | 95.5 | |||
2 | ![]() | 5∶1 | 79.8 | 82.4 | 100 |
![]() | 95.7 | 94.8 | |||
3 | ![]() | 5∶1 | 78.3 | 81.9 | 100 |
![]() | 99.8 | 96.9 | |||
4 | ![]() | 5∶1 | 59.0 | 51.6 | 94.6 |
![]() | 14.2 | 92.4 | |||
5 | ![]() | 5∶1 | 23.6 | 35.2 | 90.7 |
![]() | 93.3 | 96.2 |
Table 3 Results of epoxidation of different diolefins*
Entry | Substrate | Molar ratio | Conv. (%, molar fraction) | Total conv. (%, molar fraction) | Epoxide selec.(%) |
---|---|---|---|---|---|
1 | ![]() | 5∶1 | 87.5 | 88.0 | 93.8 |
![]() | 90.6 | 95.5 | |||
2 | ![]() | 5∶1 | 79.8 | 82.4 | 100 |
![]() | 95.7 | 94.8 | |||
3 | ![]() | 5∶1 | 78.3 | 81.9 | 100 |
![]() | 99.8 | 96.9 | |||
4 | ![]() | 5∶1 | 59.0 | 51.6 | 94.6 |
![]() | 14.2 | 92.4 | |||
5 | ![]() | 5∶1 | 23.6 | 35.2 | 90.7 |
![]() | 93.3 | 96.2 |
1 | Feng L., Shao L. X., Li S. J., Quan W. X., Zhuang J. L., Chem. J. Chinese Universities, 2022, 43(4), 20210867 |
冯丽, 邵兰兴, 李四骏, 全文选, 庄金亮. 高等学校化学学报, 2022, 43(4), 20210867 | |
2 | Zhu J., Xia T., Cui Y., Yang Y., Qian G. A., J. Solid State Chem., 2019, 270, 317—323 |
3 | Du T., Long Y., Tang Q., Li S. L., Liu L. Y., Chem. J. Chinese Universities, 2017, 38(2), 225—230 |
杜涛, 龙渊, 汤琦, 李生璐, 刘丽影. 高等学校化学学报, 2017, 38(2), 225—230 | |
4 | Orcajo G., Andres H. M., Villajos J. A., Martos C., Batas J. A., Calleja G., Int. J. Hydrogen Energy, 2018, 44, 19285—19293 |
5 | Sun H., Yu X., Ma X., Yang X., Ge M., Catal. Today, 2020, 355, 580—586 |
6 | Lu X. H., Tao P. P., Huang F. F., Zhang X. G., Lin Z. C., Pan H. J., Zhang H. F., Zhou D., Xia Q. H., Chem. J. Chinese Universities, 2019, 40(3), 528—535 |
鲁新环, 陶佩佩, 黄锋锋, 张香归, 林志成, 潘海军, 张海福, 周丹, 夏清华. 高等学校化学学报, 2019, 40(3), 528—535 | |
7 | Lazaro I. A., Forgan R. S., Coord. Chem. Rev., 2019, 380, 230—259 |
8 | Wang J., Schopfer M. P., Sarjeant A., Karlin K. D., J. Am. Chem. Soc., 2009, 131, 450—451 |
9 | Fu Y., Xu L., Shen H., Yang H., Zhang F., Zhu W., Chem. Eng. J., 2016, 299, 135—141 |
10 | Olaf C., Joan S. P., Miquel C., ACS Catal., 2017, 7, 5046—5053 |
11 | Takahiro S., Hisashi Y., ACS Catal., 2019, 9, 3384—3388 |
12 | Zhao W., Yang C. X., Cheng Z. G., Zhang Z.H., Green Chem., 2016, 18, 995—998 |
13 | Luis D., Karine D., Chatel G., Moores A. H., Green Chem., 2017, 19, 2855—2862 |
14 | Yang G. Q., Du H. Y., Liu J., Green Chem., 2017, 19, 675—681 |
15 | Santiago Portillo A., Navalón S., Cirujano F. G., ACS Catal., 2015, 5, 3216—3224 |
16 | Jing R., Lu X. H., Zhang H. F., Tao P. P., Pan H. J., Hu A., Zhou D., Xia Q. H., Chem. J. Chinese Universities, 2019, 40(4), 755—762 |
景润, 鲁新环, 张海福, 陶佩佩, 潘海军, 胡傲, 周丹, 夏清华. 高等学校化学学报, 2019, 40(4), 755—762 | |
17 | Qian W. H., Huang W., Cong Y. F., Li F. S., Chem. J. Chinese Universities, 2019, 40(6), 1178—1183 |
钱文浩, 黄玮, 丛玉凤, 李富盛. 高等学校化学学报, 2019, 40(6), 1178—1183 | |
18 | Wang R.Y., Liu X. F., Yang F., Gao S. Y., Zhou S. J., Kong Y., Appl. Surf. Sci., 2021, 537, 148100 |
19 | Bai C. H., Li A. Q., Yao X., Liu H., Li Y., Green Chem., 2016, 18, 1061—1069 |
20 | Shi D. Y., Wang S. J., Cui C. J., Zhou Q., Chen D., J. Clust. Sci., 2020, 32, 579—584 |
21 | Luz I., León A., Boronat M., Boronat F. X., Llabrési Xamena, Corma A., Catal. Sci. Technol., 2013, 3, 371—379 |
22 | Yang L., Zhang H. F., Tao P. P., Lu X. H., Li X. X., Wang C. L., Wang B. B., Yue F. F., Zhou D., Xia Q. H., ACS Appl. Mater. Interfaces, 2021, 13, 8474-8487 |
23 | Maksimchuk N. V., Kovalenko K. A., Fedin V. P., Kholdeeva O. A., Chem. Commun., 2012, 48, 6812—6814 |
24 | Lida H., Faezeh F., Reat. Kinet. Mech. Cat., 2013, 109, 67—75 |
25 | Liu X. K., Hu M.Y., Wang M. H., Biosens. Bioelectron., 2019, 123, 59—68 |
26 | Yu W. T., Luo M.B., Yang Y. X., J. Solid State Chem., 2019, 269, 264—270 |
27 | Pappas D. K., Boningari T., Boolchand P., Smirniotis P. G., J. Catal., 2016, 334, 1—13 |
28 | Zhang H. F., Lu X. H., Yang L., Hu Y., Yuan M. Y., Wang C. L., Liu Q. R., Yue F. F., Zhou D., Xia Q. H., Mol. Catal., 2021, 499, 111300 |
29 | Kong A. G., Mao C. Y., Lin Q. P., Wei X., Bu X. H., Feng P. Y., Dalton T., 2015, 44, 6748—6754 |
[1] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[2] | BI Gening, XIAO Xiaohua, LI Gongke. Development and Validation of Multiple Physical Fields Coupling Model for Microwave-assisted Extraction [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210739. |
[3] | WANG Peng, LIU Huan, YANG Da. Recent Advances on Hydrocarbonylation of Unsaturated Hydrocarbons by Involving Carbon Monoxide [J]. Chem. J. Chinese Universities, 2021, 42(10): 3024. |
[4] | WANG Yong, DONG Biao, SUN Jiao, DONG Delu, SUN Liankun. Synthesis and Spectral Properties of Ag/SiO2-Al2O3 Composite Nanomaterial Based on Molecular Sieve Template [J]. Chem. J. Chinese Universities, 2021, 42(10): 3233. |
[5] | GUO Shujia, WANG Sen, ZHANG Li, QIN Zhangfeng, WANG Pengfei, DONG Mei, WANG Jianguo, FAN Weibin. Regulating the Acid Sites Distribution in ZSM-5 Zeolite and Its Catalytic Performance in the Conversion of Methanol to Olefins [J]. Chem. J. Chinese Universities, 2021, 42(1): 227. |
[6] | XU Wenyi,FENG Yisi. Oxidative Trifluoromethylation of CF3SO2Na with Olefins Mediated by Diacetyl† [J]. Chem. J. Chinese Universities, 2020, 41(7): 1567. |
[7] | ZHOU Chunni, ZHENG Ziang, PENG Wangming, WANG Hongbo, ZHANG Yumin, WANG Liang, XIAO Biao. Microwave Assisted Rhodium-catalyzed C—H Activation/cyclization of Diaryl Phosphoramides and Alkynes † [J]. Chem. J. Chinese Universities, 2020, 41(4): 726. |
[8] | LIANG Longqi, CHEN Cailing, YU Ying, LI Yuxin, LI Chunguang, SHI Zhan. Synthesis, Luminescence and Cell Imaging Properties of Amino Acid Capped YVO4∶Eu Nanoparticles [J]. Chem. J. Chinese Universities, 2020, 41(3): 425. |
[9] | LIN Junjie, WANG Shuang, LI Weiqiang, CUI Xin, HUANG Chao. Efficient Synthesis of Pyridine [2,3-d]pyrimidine Derivatives by Catalyst-free Tandem Cyclization Under Microwave Irradiation [J]. Chem. J. Chinese Universities, 2020, 41(12): 2749. |
[10] | ZHANG Ronghui, MIN Deng, WANG Lailai, XIE Wenjian. Research Progress of Catalysts for Gas-phase Fluorination to Synthesize Hydorfluoroolefins† [J]. Chem. J. Chinese Universities, 2020, 41(10): 2199. |
[11] | HUANG He, LI Chunguang, SHI Zhan, FENG Shouhua. Microwave-assisted Hydrothermal Synthesis of Carbon Dots Based on Tyrosine and Their Application in Ion Detection and Bioimaging [J]. Chem. J. Chinese Universities, 2019, 40(8): 1579. |
[12] | MA Dongwei,TIAN Runsai,LIU Zhenjiang,FENG Yuanyuan,DING Hongyu,FENG Jijun. Microwave-assisted Synthesis and Electrochemical Performance of Na-Doped Cathode Materials Li2-xNaxMnSiO4/C† [J]. Chem. J. Chinese Universities, 2019, 40(6): 1280. |
[13] | GAN Siping, LI Guohua, ZHAI Jiaxin, ZHANG Xueming, ZHU Mengmeng, HU Enyan, ZHANG Xiaorui, ZHANG Jingru. Synthesis of Boron Nitride Nanosheets Supported Pd(OAc)2 and the Catalytic Microwaves-assisted Heck Reactions [J]. Chem. J. Chinese Universities, 2019, 40(11): 2314. |
[14] | SU Rui,WANG Yihan,CHEN Changbao,SUN Xiuli,LIU Shuying,YANG Hongmei. Determination of Brominated Flame Retardants in Environmental Water by Microwave-assisted Ionic Liquid/ionic Liquid Dispersive Liquid-liquid Microextraction Coupled with DART-Orbitrap Mass Spectrometry† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1934. |
[15] | XU Yuan, CHEN Yanhua, DING Lan. One-pot Microwave-assisted Synthesis of Passivated Fluorescent Carbon Dots for Fe(Ⅲ) Detection† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||