Chem. J. Chinese Universities ›› 2016, Vol. 37 ›› Issue (2): 297.doi: 10.7503/cjcu20150719
• Physical Chemistry • Previous Articles Next Articles
HUANG Xiao, GAN Hanlin, PENG Liang*(), GU Fenglong*(
)
Received:
2015-09-15
Online:
2016-02-10
Published:
2015-12-26
Contact:
PENG Liang,GU Fenglong
E-mail:pengliang@m.scnu.edu.cn;gu@scnu.edu.cn
Supported by:
CLC Number:
TrendMD:
HUANG Xiao, GAN Hanlin, PENG Liang, GU Fenglong. Theoretical Study on the Selective Redox Mechanism of Benzaldehyde in Photo-catalyzed Reaction†[J]. Chem. J. Chinese Universities, 2016, 37(2): 297.
Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) | Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
IM4+·OH | -496.905943 | 0 | 0 | IM5+·OH | -420.519329 | 0 | 0 |
BAC+H2O | -497.083805 | -0.177862 | -466.98 | BAC | -420.680582 | -0.161253 | -423.37 |
Table 1 Relative Gibbs free energies for the processes from IM4 and IM5 to BAC
Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) | Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
IM4+·OH | -496.905943 | 0 | 0 | IM5+·OH | -420.519329 | 0 | 0 |
BAC+H2O | -497.083805 | -0.177862 | -466.98 | BAC | -420.680582 | -0.161253 | -423.37 |
Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) | Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
O2(in ethanol) | -150.321004 | 0 | 0 | BHA(in ethanol) | -345.433966 | 0 | 0 |
-150.439021 | -0.118017 | -309.85 | IM1(in ethanol) | -345.522669 | -0.088703 | -232.89 | |
O2(in water) | -150.320706 | 0 | 0 | BHA(in water) | -345.429490 | 0 | 0 |
-150.447154 | -0.126448 | -331.99 | IM1(in water) | -345.522900 | -0.093410 | -245.25 |
Table 2 Relative Gibbs free energies for the processes from O2 and BHA to O2·- and IM1 in different solvents
Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) | Species | G/a.u. | ΔG/a.u. | ΔG/(kJ·mol-1) |
---|---|---|---|---|---|---|---|
O2(in ethanol) | -150.321004 | 0 | 0 | BHA(in ethanol) | -345.433966 | 0 | 0 |
-150.439021 | -0.118017 | -309.85 | IM1(in ethanol) | -345.522669 | -0.088703 | -232.89 | |
O2(in water) | -150.320706 | 0 | 0 | BHA(in water) | -345.429490 | 0 | 0 |
-150.447154 | -0.126448 | -331.99 | IM1(in water) | -345.522900 | -0.093410 | -245.25 |
[1] | Hoffmann M. R., Martin S. T., Choi W., Bahnemann D. W., Chem. Rev., 1995, 95(1), 69—96 |
[2] | Hagfeldt A., Grätzel M., Acc. Chem. Res., 2000, 33(5), 269—277 |
[3] | Nowotny J., Sorrell C. C., Bak T., Sheppard L. R., Sol. Energy, 2005, 78(5), 593—602 |
[4] | Chong M. N., Jin B., Chow C. W. K., Saint C., Water Res., 2010, 44(10), 2997—3027 |
[5] | Joyce-Pruden C., Pross J. K., Li Y. Z., J. Org. Chem., 1992, 57(19), 5087—5091 |
[6] | Park H., Choi W., Catal. Today, 2005, 101(3/4), 291—297 |
[7] | Zhang M., Wang Q., Chen C. C., Zang L., Ma W. H., Zhao J. C., Angew. Chem. Int. Ed., 2009, 48(33), 6081—6084 |
[8] | Ferry J. L., Glaze W. H., Langmuir, 1998, 14(13), 3551—3555 |
[9] | Wu W. M., Wen L. R., Shen L. J., Liang R. W., Yuan R. S., Wu L., Appl. Catal. B, 2013, 130—131, 163—167 |
[10] | Mills A., O’Rourke C., J. Photochem. Photobiol. A, 2012, 233, 34—39 |
[11] | Su F. Z., Mathew S. C., Lipner G., Fu X. Z., Antonietti M., Blechert S., Wang X. C., J. Am. Chem. Soc., 2010, 132(46), 16299—16301 |
[12] | Wang D. B., Zhao L. X., Guo L. H., Zhang H., Wan B., Yang Y., Acta Chim. Sinica, 2015, 73(5), 388—394 |
(王大彬, 赵利霞, 郭良宏, 张辉, 万斌, 杨郁. 化学学报, 2015, 73(5), 388—394) | |
[13] | Xu Y. M., Prog. Chem., 2009, 21(2), 524—533 |
(许宜铭. 化学进展, 2009, 21(2), 524—533) | |
[14] | He H. Y., Zapol P., Curtiss L. A., Energy Environ. Sci., 2012, 5(3), 6196—6205 |
[15] | Huang X., Peng L., Li S. P., Gu F. L., Theor. Chem. Acc., 2015, 134(2), 3-1—12 |
[16] | Huang X., Peng L., Gu F. L., Zhang R. Q., Phys. Chem. Chem. Phys., 2015, 17(30), 19997—20005 |
[17] | Kılıç M., Koçtürk G., San N., Çınar Z., Chemosphere, 2007, 69(9), 1396—1408 |
[18] | Shen Y. L., Hao J. K., Cao Y. Y. , Yang Y. C., Chem. J. Chinese Universities, 2007, 28(9), 1743—1746 |
(申勇立, 郝金库, 曹映玉, 杨恩翠. 高等学校化学学报, 2007, 28(9), 1743—1746) | |
[19] | Wang S., Wang W. N., Gao Z. F., Wang W. L., Chem. J. Chinese Universities, 2015, 36(8), 1588—1595 |
(王帅, 王渭娜, 高志芳, 王文亮. 高等学校化学学报, 2015, 36(8), 1588—1595) | |
[20] | Zhao Y., Truhlar D. G., Theor. Chem. Acc., 2008, 120(1—3), 215—241 |
[21] | Fukui K., Acc. Chem. Res., 1981, 14(12), 363—368 |
[22] | Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B, 2009, 113(18), 6378—6396 |
[23] | Legault C.Y., CYL View Version 1.0b, University of Sherbrooke, Sherbrooke, 2009 |
[24] | Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09, Revision C. 01, Gaussian Inc., Wallingford CT, 2010 |
[25] | Jaeger C. D., Bard A. J., J. Phys. Chem., 1979, 83(24), 3146—3152 |
[26] | Dmitrenko O., Thorpe C., Bach R. D., J. Org. Chem., 2007, 72(22), 8298—8307 |
[27] | Boronat M., Viruela P., Corma A., J. Phys. Chem. B, 1997, 101(48), 10069—10074 |
[28] | Legrini O., Oliveros E., Braun A. M., Chem. Rev., 1993, 93(2), 671—698 |
[29] | Bahnemann W., Muneer M., Haque M. M., Catal. Today, 2007, 124(3/4), 133—148 |
[30] | Luo Y. L., Liu Y. J., Chem. J. Chinese Universities, 2015, 36(1), 24—33 |
(罗艳玲, 刘亚军. 高等学校化学学报, 2015, 36(1), 24—33) |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[3] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[4] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[5] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[6] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[7] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[8] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[9] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[10] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[11] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[12] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[13] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[14] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[15] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||