Chem. J. Chinese Universities ›› 2025, Vol. 46 ›› Issue (10): 20250035.doi: 10.7503/cjcu20250035
• Polymer Chemistry • Previous Articles Next Articles
					
													CAI Lei1, LI Lizhe1(
), LI Hao2(
), CAI Chang3, LI Tiehu2
												  
						
						
						
					
				
Received:2025-02-09
															
							
															
							
															
							
																											Online:2025-10-10
																								
							
																	Published:2025-06-06
															
						Contact:
								LI Hao   
																	E-mail:lilizhe@nwpu.edu.cn;lihao@nwpu.edu.cn
																					Supported by:CLC Number:
TrendMD:
CAI Lei, LI Lizhe, LI Hao, CAI Chang, LI Tiehu. Preparation and Property of Sponge-like Graphene Oxide/Polyethylene Glycol Composite Phase Change Materials[J]. Chem. J. Chinese Universities, 2025, 46(10): 20250035.
| Material | Onset temperature of melting, Tom/℃  | Peak temperature, Ttm/℃  | Endset temperature of melting, Tem/℃  | Enthalpy of fusion, ΔHm/(J·g-1)  | Relative enthalpy efficiency, η(%)  | 
|---|---|---|---|---|---|
| PEG | 50.9 | 54.7 | 55.6 | 202.1 | 100 | 
| 0.5%SLGO/PEG | 48.5 | 53.0 | 53.7 | 194.0 | 96.5 | 
| 1.0%SLGO/PEG | 50.7 | 54.8 | 56.3 | 191.6 | 95.8 | 
| 1.5%SLGO/PEG | 50.5 | 54.5 | 58.4 | 189.6 | 95.2 | 
| 2.0%SLGO/PEG | 50.6 | 54.6 | 55.7 | 179.1 | 90.4 | 
Table 1 DSC data of the heating process for PEG and SLGO/PEG
| Material | Onset temperature of melting, Tom/℃  | Peak temperature, Ttm/℃  | Endset temperature of melting, Tem/℃  | Enthalpy of fusion, ΔHm/(J·g-1)  | Relative enthalpy efficiency, η(%)  | 
|---|---|---|---|---|---|
| PEG | 50.9 | 54.7 | 55.6 | 202.1 | 100 | 
| 0.5%SLGO/PEG | 48.5 | 53.0 | 53.7 | 194.0 | 96.5 | 
| 1.0%SLGO/PEG | 50.7 | 54.8 | 56.3 | 191.6 | 95.8 | 
| 1.5%SLGO/PEG | 50.5 | 54.5 | 58.4 | 189.6 | 95.2 | 
| 2.0%SLGO/PEG | 50.6 | 54.6 | 55.7 | 179.1 | 90.4 | 
| Materials | Onset temperature of crystallization, Toc/℃  | Peak temperature, Ttc/℃  | Endset temperature of crystallization, Tec/℃  | Enthalpy of crystallization, ΔHc/(J·g-1)  | Degree of supercooling, ΔT/℃  | 
|---|---|---|---|---|---|
| PEG | 39.4 | 37.1 | 35.6 | 192.0 | 11.5 | 
| 0.5%SLGO/PEG | 39.7 | 37.1 | 35.6 | 185.4 | 8.8 | 
| 1.0%SLGO/PEG | 40.2 | 37.8 | 35.0 | 182.9 | 10.5 | 
| 1.5%SLGO/PEG | 39.4 | 36.9 | 34.6 | 180.2 | 11.1 | 
| 2.0%SLGO/PEG | 38.5 | 36.0 | 34.3 | 172.7 | 12.1 | 
Table 2 DSC data of the cooling process for PEG and SLGO/PEG
| Materials | Onset temperature of crystallization, Toc/℃  | Peak temperature, Ttc/℃  | Endset temperature of crystallization, Tec/℃  | Enthalpy of crystallization, ΔHc/(J·g-1)  | Degree of supercooling, ΔT/℃  | 
|---|---|---|---|---|---|
| PEG | 39.4 | 37.1 | 35.6 | 192.0 | 11.5 | 
| 0.5%SLGO/PEG | 39.7 | 37.1 | 35.6 | 185.4 | 8.8 | 
| 1.0%SLGO/PEG | 40.2 | 37.8 | 35.0 | 182.9 | 10.5 | 
| 1.5%SLGO/PEG | 39.4 | 36.9 | 34.6 | 180.2 | 11.1 | 
| 2.0%SLGO/PEG | 38.5 | 36.0 | 34.3 | 172.7 | 12.1 | 
| [1] | Xu T. Y., Feng Y. Y., Feng W., Acta Polym. Sin., 2021, 52(1), 78—83 | 
| 徐天宇, 冯奕钰, 封伟. 高分子学报, 2021, 52(1), 78—83 | |
| [2] | Zhu W. N., Huang B. Y., Zhao J., Y. Chen X. Y., Sun C. S., Energy Build., 2023, 287, 112926 | 
| [3] | Li B. X., Nie S. B., Hao Y. G., Liu T. X., Zhu J. B., Yan S. L., Energy Conv. Manag., 2015, 98, 314—321 | 
| [4] | Wang F., Pang D. Q., Liu X. F., Liu M. W., Du W. F., Zhang Y. C., Cheng X. Q., J. Energy Storage, 2023, 60, 106606 | 
| [5] | Suresh C., Saini R. P., Int. J. Energy Res., 2021, 45(4), 5730—5746 | 
| [6] | Heritage K., Bryant B., Fenner L. A., Wills A. S., Aeppli G., Soh Y. A., Adv. Funct. Mater., 2020, 30(36), 1909163 | 
| [7] | Guo X., Wei K., Ni T. F., Shi W. S., Dai C. X., Zhao Z. F., Gu Z. P., J. Energy Storage., 2024, 88, 111525 | 
| [8] | Shi J. M., Aftab W., Liang Z. B., Yuan K. J., Maqbool M., Jiang H. Y., Xiong F., Qin M. L., Gao S., Zou R. Q., J. Mater. Chem. A, 2020, 8(38), 20133—20140 | 
| [9] | Wang Y., Comer J., Chen Z. F., Chen J. W., Gumbart J. C., Environ. Sci. Nano, 2018, 5(9), 2117—2128 | 
| [10] | Huang Q. Q., Li X. X., Zhang G. Q., Kan Y. C., Li C. B., Deng J., Wang C. H., Appl. Energy, 2022, 309, 118434 | 
| [11] | Zhang J. W., Cheng Z. D., Wang J. L., Huang D. J., Sun M. K., Wang X. Y., Guo Y. X., Int. J. Pavement. Eng., 2023, 24(1), 2259570 | 
| [12] | Tas C. E., Karaoglu O., Tas B. A., Ertas E., Unal H., Bildirir H., Sol. Energy Mater. Sol. Cells, 2020, 216, 110677 | 
| [13] | Fang Y. T., Kang H. Y., Wang W. L., Liu H., Gao X. N., Energy Conv. Manag., 2010, 51(12), 2757—2761 | 
| [14] | Zheng R., Cai Z. Y., Wang C. M., Shen J. F., Xie S. A., Qi Z. Y., J. Therm. Anal. Calorim., 2023, 148(19), 9937—9946 | 
| [15] | Feng L. L., Zheng J., Yang H. Z., Guo Y. L., Li W., Li X. G., Sol. Energy Mater. Sol. Cells, 2011, 95(2), 644—650 | 
| [16] | Li M., Mu B. Y., Appl. Energy, 2019, 242, 695—715 | 
| [17] | Zhu X. N., Feng D. L., Feng Y. H., Lin L., Zhang X. X., Acta Phys. Sin., 2023, 72(8), 320—329 | 
| 朱祥宁, 冯黛丽, 冯妍卉, 林林, 张欣欣. 物理学报, 2023, 72(8), 320—329 | |
| [18] | Yang J., Zhou J. T., Nie Z. X, Liu L., Rev. Compos. Mater. Av., 2019, 2019(1), 29 | 
| [19] | Yan K. N, Feng Y. H., Qiu L., Sol. Energy., 2024, 272, 112477 | 
| [20] | Gu X. B., Dong K. J., Peng L. H., Bian L., Sun Q., Luo W. M., Zhang B. B., Energy Conv. Manag., 2023, 277, 116634 | 
| [21] | Chen X., Cheng P., Tang Z. D., Xu X. L., Gao H. Y., Wang G., Adv. Sci., 2021, 8(9), 2001274 | 
| [22] | Wang D., Ge X. S., Zhang J. F., Su Z. M., Chem. Res. Chinese Universities, 2019, 35(6), 1082—1088 | 
| [23] | Hu Y. J., Jin J., Zhang H., Wu P., Cai C. X., Acta Phys. Chim. Sin., 2010, 26(8), 2073—2086 | 
| 胡耀娟, 金娟, 张卉, 吴萍, 蔡称心. 物理化学学报, 2010, 26(8), 2073—2086 | |
| [24] | Bahiraei M., Heshmatian S., Energy Conv. Manag., 2019, 196, 1222—1256 | 
| [25] | Huang G. J., Chen Z. G., Li M. D., Yang B., Xin M. L., Li S. P., Yin Z. J., Acta Chim. Sinica, 2016, 74(10), 789—799 | 
| 黄国家, 陈志刚, 李茂东, 杨波, 辛明亮, 李仕平, 尹宗杰. 化学学报, 2016, 74(10), 789—799 | |
| [26] | Wu J. Y., Lin H., Moss D. J., Loh K. P., Jia B. H., Nat. Rev. Chem., 2023, 7(3), 162—183 | 
| [27] | Yang X. D., Guo Z. Q., Xu Y. C., Li Z. L., Zhou Y. T., Yang Z. M., Zhou Z. S., Gao Y., Zhang J. S., Chem. Res. Chinese Universities, 2024, 40(3), 536—547 | 
| [28] | Huang Q. Q., Chen Y., Yu H. Q., Yan L. G., Zhang J. H., Wang B., Du B., Xing L. T., Chem. Eng. J., 2018, 341, 1—9 | 
| [29] | Wang B. Zhang F., He S. F., Huang F., Peng Z. Y., Asian J. Chem., 2014, 26(15), 4901—4906 | 
| [30] | Cao H. Y., Bi H. C., Xie X., Su S., Sun L. T., Acta Phys. Sin., 2016, 65(14), 221—232 | 
| 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 物理学报, 2016, 65(14), 221—232 | |
| [31] | Rodríguez⁃García S., Santiago R., López⁃Díaz D., Merchán M. D., Velázquez M. M., Fierro J. L. G., Palomar J., ACS Sustain. Chem. Eng., 2019, 7(14), 12464—12473 | 
| [32] | Abbasabadi M. K., Rashidi A., Safaei⁃Ghomi J., Khodabakhshi S., Rahighi R., J. Sulfur Chem., 2015, 36(6), 660—671 | 
| [33] | Wen B. Y., Sun C. Z., Bai B. F., Acta Phys. Chim. Sin., 2015, 31(2), 261—267 | 
| 温伯尧, 孙成珍, 白博峰. 物理化学学报, 2015, 31(2), 261—267 | |
| [34] | Li P. H., Zhang C. L., Dai X. Y., Sui Y. L., Chem. J. Chinese Universities, 2021, 42(6), 1694—1703 | 
| 李佩鸿, 张春玲, 戴雪岩, 隋颜隆. 高等学校化学学报, 2021, 42(6), 1694—1703 | |
| [35] | Hu Y., Li Z., Li H. Q., Song S. X., Lopez⁃Valdivieso A., Surf. Rev. Lett., 2017, 24(6), 1750087 | 
| [36] | Shrivastava S., Thomas S., Sobhan C. B., Peterson G. P., Int. J. Refrig., 2018, 96, 179—190 | 
| [37] | Cheong Y. K., Arce M. P., Benito A., Chen D. J., Crisóstomo N. L., Kerai L. V., Rodríguez G., Valverde J. L., Vadalia M., Cerpa⁃Naranjo A., Ren G. G., Nanomaterials, 2020, 10(5), 819 | 
| [38] | Chen Q. L., Huang X. N., Chen Y. Z., Chen X., Hao Z. F., Liang J. J., Yu J., Tan G. Z., Sol. Energy Mater. Sol. Cells, 2025, 285, 113509 | 
| [39] | Cárdenas⁃Ramírez C., Gómez M. A., Jaramillo F., Fernández A. G., Cabeza L. F., J. Energy Storage, 2021, 40, 102661 | 
| [40] | Li M., Wang C. C., Renew. Energy, 2019, 141, 1005—1012 | 
| [41] | Li Z., Zhang B., Wang L. W., 2023, 74(6), 2680—2688 | 
| 李振, 张博, 王丽伟. 化工学报, 2023, 74(6), 2680—2688 | |
| [42] | Du Y., Huang H. W., Hu X. P., Liu S., Sheng X. X., Li X. L., Lu X., Qu J. P., Renew. Energy, 2021, 171, 1—10 | 
| [43] | Fang Y., Li Z. L., Li X. L., Wu H., Sheng M. J., Lu X., Qu J. P., Chem. Eng. J., 2023, 459, 141600 | 
| [44] | Gök Ö., Alkan C., J. Therm. Anal. Calorim., 2021, 146(4), 1511—1523 | 
| [45] | Wu Y. F., Li L. T., Chen S. P., Qin J., Chen X. L., Zhou D. F., Wu H., Sci. Rep., 2020, 10(1), 3627 | 
| [1] | AN Yaolong, LI Zi⁃Heng, WU Fu⁃Gen. A Self-assembled Nanomicelle for Realizing Tumor Photodynamic Therapy via Increasing Drug Accumulation and Prolonging Retention Time [J]. Chem. J. Chinese Universities, 2025, 46(1): 20240331. | 
| [2] | LIU Shijia, LI Qian, CUI Kun, MA Zhi, ZHANG Danwei, WANG Hui, LI Zhanting. Synthesis and Rheological Properties of Pillar[5]arene-polyethylene Glycol-conjugated Poly(pseudo)rotaxanes as Slide-ring Materials [J]. Chem. J. Chinese Universities, 2023, 44(10): 20230211. | 
| [3] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. | 
| [4] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. | 
| [5] | XIE Fan,WANG Yafang,ZHUO Longhai,QIN Panliang,NING Doudou,WANG Danni,LU Zhaoqing. Preparation and Properties of High Thermal Conductivity Hexagonal Boron Nitride/Aramid Fibrid Composite Film  [J]. Chem. J. Chinese Universities, 2020, 41(3): 582. | 
| [6] | ZHANG Li,QIAN Mingchao,LIU Xueke,Gao Shuaitao,YU Jiang,XIE Haishen,WANG Hongbin,SUN Fengjiang,SU Xianghong. Dynamic Study of Oxidative Desulfurization by Iron-based Ionic Liquids/NHD † [J]. Chem. J. Chinese Universities, 2020, 41(2): 317. | 
| [7] | GUO Zhaopei,LIN Lin,CHEN Jie,TIAN Huayu,CHEN Xuesi. Polyglutamic Acid Grafted Polyethylene Glycol@Calcium Carbonate Based Shielding System for Improving Polyethyleneimine Gene Transfection Efficiency † [J]. Chem. J. Chinese Universities, 2020, 41(2): 235. | 
| [8] | LI Lin, XU Xinru, LI Yingqi, ZHANG Caifeng. Preparation of Targeting Nanodiamond-metaminopterone Drug System and Its Interaction with MCF-7 Cells † [J]. Chem. J. Chinese Universities, 2019, 40(9): 1998. | 
| [9] | ZHAO Yuxuan,CHEN Yanjun,PAN Guxin,WANG Chang,PENG Zhenbo,SUN Zongxu,LIANG Yongri,SHI Qisong. Preparation and Performance of Novel Tb-PEG+Eu-PEG/PANI/PAN Luminescent-electrical-phase Change Composite Fibers by Electrospinning† [J]. Chem. J. Chinese Universities, 2019, 40(4): 824. | 
| [10] | QIAN Yihao, ZHANG Dongjie, CHENG Zhongjun, KANG Hongjun, LIU Yuyan. Preparation of Hydrophilic Epoxy Resin and Its Wettability Regulation† [J]. Chem. J. Chinese Universities, 2018, 39(8): 1823. | 
| [11] | GAO Yan, ZHANG Hua, ZHANG Wen, LI Xiangpeng, YUE Pan, LI Wei. Preparation of Micro/Nano-fibers Membranes Encapsulated with Dual Drugs by Emulsion Electrospun and Controlled Release of Hydrophilic and Hydrophobic Drugs† [J]. Chem. J. Chinese Universities, 2018, 39(3): 575. | 
| [12] | LIU Jie, ZHOU Hao, HUANG Yufang, CHEN Xin. Soy Protein Isolate/Agar Composite Hydrogel† [J]. Chem. J. Chinese Universities, 2018, 39(3): 591. | 
| [13] | LIU Jie, ZHOU Hao, HUANG Yufang, CHEN Xin. Polyethylene Glycol Chemically Modified Soy Protein Isolate Hydrogel† [J]. Chem. J. Chinese Universities, 2018, 39(2): 390. | 
| [14] | WANG Zhengguang, HU Duo, WU Dongwei, LU Lu, ZHOU Changren. Preparation and Properties of Double Network Hydrogels Based on Gellan Gum and Polyethylene Glycol Acrylate† [J]. Chem. J. Chinese Universities, 2017, 38(2): 275. | 
| [15] | QIU Chuanlong,LI Chunfang,LI Dongxiang,HOU Wanguo. Synthesis, Characterization and Aggregation Behavior of Polyethylene Glycol-conjugated Hydroxycamptothecin† [J]. Chem. J. Chinese Universities, 2016, 37(8): 1535. | 
| Viewed | ||||||
| 
										Full text | 
									
										 | 
								|||||
| 
										Abstract | 
									
										 | 
								|||||