Chem. J. Chinese Universities ›› 2019, Vol. 40 ›› Issue (4): 824.doi: 10.7503/cjcu20180695
• Polymer Chemistry • Previous Articles Next Articles
ZHAO Yuxuan1, CHEN Yanjun2,3, PAN Guxin1, WANG Chang1, PENG Zhenbo2,3, SUN Zongxu1, LIANG Yongri1, SHI Qisong1,*()
Received:
2018-10-16
Online:
2019-01-15
Published:
2019-01-15
Contact:
SHI Qisong
E-mail:shiqisong@bipt.edu.cn
Supported by:
CLC Number:
TrendMD:
ZHAO Yuxuan,CHEN Yanjun,PAN Guxin,WANG Chang,PENG Zhenbo,SUN Zongxu,LIANG Yongri,SHI Qisong. Preparation and Performance of Novel Tb-PEG+Eu-PEG/PANI/PAN Luminescent-electrical-phase Change Composite Fibers by Electrospinning†[J]. Chem. J. Chinese Universities, 2019, 40(4): 824.
Sample | Component | Mw of PEG | m(Tb-PEG): m(Eu-PEG) | m(Tb-PEG)/g | m(Eu-PEG)/g | m(PANI· DBSA)/g |
---|---|---|---|---|---|---|
S1 | Tb-PEG6000/PANI/PAN | 6000 | 10:0 | 0.18 | 0 | 0.18 |
S2 | Tb-PEG8000/PANI/PAN | 8000 | 10:0 | 0.18 | 0 | 0.18 |
S3 | Tb-PEG10000/PANI/PAN | 10000 | 10:0 | 0.18 | 0 | 0.18 |
S4 | Tb-PEG+Eu-PEG(7/3)/PANI/PAN | 10000 | 7:3 | 0.126 | 0.054 | 0.18 |
S5 | Tb-PEG+Eu-PEG(6/4)/PANI/PAN | 10000 | 6:4 | 0.108 | 0.072 | 0.18 |
S6 | Tb-PEG+Eu-PEG(5/5)/PANI/PAN | 10000 | 5:5 | 0.09 | 0.09 | 0.18 |
S7 | Tb-PEG+Eu-PEG(4/6)/PANI/PAN | 10000 | 4:6 | 0.072 | 0.108 | 0.18 |
S8 | Eu-PEG10000/PANI/PAN | 10000 | 0:10 | 0 | 0.18 | 0.18 |
S9 | Tb-PEG10000/PANI35/PAN | 10000 | 10:0 | 0.18 | 0 | 0.21 |
S10 | Tb-PEG10000/PANI45/PAN | 10000 | 10:0 | 0.18 | 0 | 0.27 |
S11 | Tb-PEG10000/PANI55/PAN | 10000 | 10:0 | 0.18 | 0 | 0.33 |
Table 1 Compositions and contents of spinning solutions
Sample | Component | Mw of PEG | m(Tb-PEG): m(Eu-PEG) | m(Tb-PEG)/g | m(Eu-PEG)/g | m(PANI· DBSA)/g |
---|---|---|---|---|---|---|
S1 | Tb-PEG6000/PANI/PAN | 6000 | 10:0 | 0.18 | 0 | 0.18 |
S2 | Tb-PEG8000/PANI/PAN | 8000 | 10:0 | 0.18 | 0 | 0.18 |
S3 | Tb-PEG10000/PANI/PAN | 10000 | 10:0 | 0.18 | 0 | 0.18 |
S4 | Tb-PEG+Eu-PEG(7/3)/PANI/PAN | 10000 | 7:3 | 0.126 | 0.054 | 0.18 |
S5 | Tb-PEG+Eu-PEG(6/4)/PANI/PAN | 10000 | 6:4 | 0.108 | 0.072 | 0.18 |
S6 | Tb-PEG+Eu-PEG(5/5)/PANI/PAN | 10000 | 5:5 | 0.09 | 0.09 | 0.18 |
S7 | Tb-PEG+Eu-PEG(4/6)/PANI/PAN | 10000 | 4:6 | 0.072 | 0.108 | 0.18 |
S8 | Eu-PEG10000/PANI/PAN | 10000 | 0:10 | 0 | 0.18 | 0.18 |
S9 | Tb-PEG10000/PANI35/PAN | 10000 | 10:0 | 0.18 | 0 | 0.21 |
S10 | Tb-PEG10000/PANI45/PAN | 10000 | 10:0 | 0.18 | 0 | 0.27 |
S11 | Tb-PEG10000/PANI55/PAN | 10000 | 10:0 | 0.18 | 0 | 0.33 |
Sample | Content | Tm/℃ | Sample | m(Tb-PEG):m(Eu-PEG) | Tm/℃ |
---|---|---|---|---|---|
PEG6000 | PEG6000 | 48.40 | S4 | 7:3 | 56.91 |
PEG8000 | PEG8000 | 61.82 | S5 | 6:45:5 | 58.49 |
PEG10000 | PEG10000 | 64.22 | S6 | 5:5 | 58.80 |
S1 | Tb-PEG6000/PANI/PAN | 54.87 | S7 | 4:6 | 60.38 |
S2 | Tb-PEG8000/PANI/PAN | 64.93 | |||
S3 | Tb-PEG10000/PANI/PAN | 66.02 |
Table 2 Melting temperatures(Tm) of electrospun composite fibers
Sample | Content | Tm/℃ | Sample | m(Tb-PEG):m(Eu-PEG) | Tm/℃ |
---|---|---|---|---|---|
PEG6000 | PEG6000 | 48.40 | S4 | 7:3 | 56.91 |
PEG8000 | PEG8000 | 61.82 | S5 | 6:45:5 | 58.49 |
PEG10000 | PEG10000 | 64.22 | S6 | 5:5 | 58.80 |
S1 | Tb-PEG6000/PANI/PAN | 54.87 | S7 | 4:6 | 60.38 |
S2 | Tb-PEG8000/PANI/PAN | 64.93 | |||
S3 | Tb-PEG10000/PANI/PAN | 66.02 |
Sample | Mass ratio of PANI·DBSA to PAN(%) | 106Conductivity/(S·cm-1) | Dielectric constant at 1 kHz |
---|---|---|---|
S9 | 35 | 0.98 | 145 |
S10 | 45 | 1.42 | 227 |
S11 | 55 | 1.50 | 263 |
Table 3 Electrical conductivity and dielectric constant of the samples doped with various amount of PANI
Sample | Mass ratio of PANI·DBSA to PAN(%) | 106Conductivity/(S·cm-1) | Dielectric constant at 1 kHz |
---|---|---|---|
S9 | 35 | 0.98 | 145 |
S10 | 45 | 1.42 | 227 |
S11 | 55 | 1.50 | 263 |
[1] | Cai Y. B., Zong X., Zhang J. J., Hu Y. Y., Wei Q. F., He G. F., Wang X. X., Zhao Y., Fong H., Solar, Energy Materials, Solar Cells,2013, 109, 160—168 |
[2] | Zong X., Cai Y. B., Sun G. Y., Zhao Y., Huang F. L., Song L., Hu Y., Fong H., Wei Q. F., Mater. Sol.Cells,2015, 132, 183—190 |
[3] | Wu Y., Chen C. Z., Jia Y. F., Wu J., Huang Y., Wang L. G., Appl.Energy,2018, 210, 167—181 |
[4] | Sundararajan S., Samui A. B., Kulkarni P. S., J. Mater. Chem.A,2017, 5, 18379—18396 |
[5] | Sundaray B., Choi A., Park Y. W., Synth.Met., 2010, 160, 984—988 |
[6] | Zhao Y. Y., Zhang Z. M., Yu L. M., Tang Q. W., Synth.Met., 2016, 212, 84—90 |
[7] | Im J. S., Kim J. G., Lee S. H., Lee Y. S., Colloids. Surf.A,2010, 364, 151—157 |
[8] | Rose A., Raghavan N., Thangavel S., Maheswari B. U., Nair D. P., Venugopal G., Mater. Sci. Semicond.Process,2015, 31, 281—286 |
[9] | Merline C., Pegoretti A., Araujo T. M., Ramoa S. D. A. S., Schreiner W. H., Barra G. M. D. O., Synth.Met., 2016, 213, 34—41 |
[10] | Li W. Z., Tao Y., An G. H., Yan P. F., Li Y. X., Li G. M., Dyes.Pigm., 2017, 146, 47—53 |
[11] | Zang X. M., Shen L. F., Pun E. Y. B., Guo J., Lin H., J. Alloy.Compd., 2007, 709, 620—626 |
[12] | Pogreb R., Whyman G., Musin A., Stanevsky O., Bormashenko Y., Sternklar S., Bormashenko E., Mater. Lett ., 2006, 60,1911—1914 |
[13] | Yu H. Q., Li T., Chen B. J., Wu Y. B., Li Y., J. Colloid Interface Sci., 2013, 400, 175—180 |
[14] | Verlan V. I., Lovu M. S., Culeac I., Nistor Y., Turta C. I., Zubareva V. E., J. Non-Cryst.Solids,2011, 357, 1004—1007 |
[15] | Rotiershtein D. M., Punts L. N., Lyssenko K. A., Taidakov I. V., Varaksina E. A., Minyaev M. E., Gerasin V. A, Guseva M. A., Vinogradov A. A., Savchenko M. S., Nifant’ev I. E., New J.Chem., 2017, 41, 13663—13672 |
[16] | Yu H. Q., Yu A. S., Li Y., Song Y., Wu Y. B., Sheng C. C., Chen B. J., J. Alloys Compd., 2016, 683, 256—262 |
[17] | Li W. Z., Tao Y., An G. H., Yan P. F., Li Y. X., Li G. M.,Dyes.Pigments,2017, 146, 47—53 |
[18] | Xue J.J., Xie J. W., Liu W. Y., Xia Y. N., Acc. Chem. Res., 2017, 50, 1976—1987 |
[19] | Shi Q. S., Liu Z. R., Jin X. Y., Shen Y., Liu Y. C., Mater.Lett., 2015, 147, 113—115 |
[20] | Shi Q. S., Zhao Y. N., Zhang M. C., Jin X. Y., Liu Y. C., Yang M. S., Chem. J. Chinese Universities,2015, 36(9), 1807—1812 |
(师奇松, 赵祎宁, 张鸣春, 靳昕怡, 刘彦池, 杨明山. 高等学校化学学报, 2015, 36(9), 1807—1812) | |
[21] | Liang G. J., Yi M., Hu H. B., Ding K., Wang L., Zeng H. B., Tang J., Liao L., Nan C. W., He Y. B., Ye C. H., Adv. Electron.Mater., 2017, 3, 1700401 |
[22] | Lun K., Ma Q. L., Dong X. T., Yu W. S., Wang J. X., Liu G. X., J. Mater. Sci. Mater Electron., 2014, 25, 5395—5402 |
[23] | Sheng S. J., Ma Q. L., Dong X. T., Lv N., Wang J. X., Yu W. S., Liu G. X., Luminescence,2015, 30, 26—31 |
[24] | Shi Q. S., Zhao Y. X., Hu B., Fu Y. L., Liang Y. R., Xie Y. L., Mater.Lett., 2017, 208, 3—6 |
[25] | Ma Q. L., Wang J. X., Dong X. T., Yu W. S., Liu G. X., Chem. Eng.J.,2013, 222, 16—22 |
[26] | Lun K., Ma Q. L., Yang M., Dong X. T., Yang Y., Wang J. X., Yu W. S., Liu G. X., Chem. Eng.J., 2015, 279, 231—240 |
[27] | Guo D. C., Sun Z. Y., Xu L. D., Gao Y., Dai M. M., Wang S. H., Chang Q., Wang C., Ma D. G., Mater.Lett., 2015, 159, 159—162 |
[28] | Ma Q. L., Wang J. X., Dong X. T, Yu W. S., Liu G. X., Adv. Funct.Mater., 2015, 25, 2436—2443 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[3] | GAO Jian, FENG Yiyu, FANG Wenyu, WANG Hui, GE Jing, FENG Wei. Alkane Grafted Phase Change Azobenzene Materials Based on Low Temperature Heat Release [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220146. |
[4] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[5] | SUN Xuefeng, RENAGUL Abdurahman, YANG Tongsheng, YANG Qianting. Synthesis and Luminescence Properties of Cr,In Co-doped Small Size MgGa2O4 Near-infrared Persistent Luminescence Nanoparticles [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210850. |
[6] | ZHOU Yonghui, LI Yao, WU Yuxuan, TIAN Jing, XU Longquan, FEI Xu. Synthesis of A Novel Photoluminescence Self-healing Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210606. |
[7] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[8] | CHU Yao, WANG Shuo, ZHANG Zinuo, WANG Yibo, CAI Yibing. Preparation and Properties of Cu Particles Loaded Foam-based Phase Change Composites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210619. |
[9] | ZHANG Liling, LIU Liu, ZHENG Mingqiu, FANG Wenkai, LIU Da, TANG Hongwu. Dual Signal Detection of HPV16 DNA by CRISPR/Cas12a Biosensing System Based on Upconversion Luminescent Resonance Energy Transfer [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220412. |
[10] | DU Shunfu, WANG Wenjing, EL⁃SAYED El⁃Sayed M., SU Kongzhao, YUAN Daqiang, HONG Maochun. A Chemiluminescent Zirconocene Coordination Tetrahedron [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210628. |
[11] | WEI Minmin, YUAN Ze, LU Min, MA Hui, XIE Xiaoji, HUANG Ling. Recent Advances in Lanthanide Doped Upconversion Nanoparticle-Metal Organic Framework Composites [J]. Chem. J. Chinese Universities, 2021, 42(8): 2313. |
[12] | YANG Sixian, ZHONG Wenyu, LI Chaoxian, SU Qiuyao, XU Bingjia, HE Guping, SUN Fengqiang. Photochemical Fabrication and Performance of Polyaniline Nanowire/SnO2 Composite Photocatalyst [J]. Chem. J. Chinese Universities, 2021, 42(6): 1942. |
[13] | MENG Yan, WANG Xiufeng, ZHANG Li, LIU Minghua. Helical Structure and Circularly Polarized Luminescence of Naphthalene Derived Amphiphilic Molecules Through Air/water Interface Assembly [J]. Chem. J. Chinese Universities, 2021, 42(4): 1253. |
[14] | ZHANG Huidong, GU Panpan, ZHANG Fang, DU Mingxu, YE Kaiqi, LIU Yu. Design and Electroluminescence Properties of Narrow-spectrum Phosphorescent Complexes [J]. Chem. J. Chinese Universities, 2021, 42(12): 3571. |
[15] | XI Jing, CHEN Na, YANG Yanbing, YUAN Quan. Recent Progress in Controlled Synthesis of Persistent Luminescence Nanomaterials for Diagnosis Applications [J]. Chem. J. Chinese Universities, 2021, 42(11): 3247. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||