Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (10): 20230196.doi: 10.7503/cjcu20230196
• Review • Previous Articles Next Articles
LI Mengdie1, WANG Zumin1,2(), QI Jian2, YU Ranbo1(
)
Received:
2023-04-20
Online:
2023-10-10
Published:
2023-07-29
Contact:
WANG Zumin, YU Ranbo
E-mail:wangzm@ipe.ac.cn;ranboyu@ustb.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Mengdie, WANG Zumin, QI Jian, YU Ranbo. Progress in the Construction of Metal Oxide Heterojunctions and Their Application in Photocatalytic CO2 Reduction[J]. Chem. J. Chinese Universities, 2023, 44(10): 20230196.
Photocatalyst b | Formation rate/(µmol·g-1·h-1) | R(e-)/ (µmol·g-1·h-1) | Selectivity for CO2 reduction(%) | Transient photocurrent responses/(μA·cm-2) c | ||
---|---|---|---|---|---|---|
CO | CH4 | H2 | ||||
TiO2 | 1.2 | 0.38 | 2.1 | 10 | 56 | ca. 10 |
Pt⁃TiO2 | 1.1 | 5.2 | 33 | 110 | 40 | ca. 158 |
Pd⁃TiO2 | 1.1 | 4.3 | 25 | 85 | 42 | ca. 140 |
Rh⁃TiO2 | 0.62 | 3.5 | 18 | 66 | 45 | ca. 63 |
Au⁃TiO2 | 1.5 | 3.1 | 20 | 67 | 41 | ca. 99 |
Ag⁃TiO2 | 1.7 | 2.1 | 16 | 51 | 39 | ca. 43 |
Table 1 Catalytic behaviors of TiO2 promoted by noble metal cocatalysts for photocatalytic reduction of CO2 in the presence of H2O vapor a
Photocatalyst b | Formation rate/(µmol·g-1·h-1) | R(e-)/ (µmol·g-1·h-1) | Selectivity for CO2 reduction(%) | Transient photocurrent responses/(μA·cm-2) c | ||
---|---|---|---|---|---|---|
CO | CH4 | H2 | ||||
TiO2 | 1.2 | 0.38 | 2.1 | 10 | 56 | ca. 10 |
Pt⁃TiO2 | 1.1 | 5.2 | 33 | 110 | 40 | ca. 158 |
Pd⁃TiO2 | 1.1 | 4.3 | 25 | 85 | 42 | ca. 140 |
Rh⁃TiO2 | 0.62 | 3.5 | 18 | 66 | 45 | ca. 63 |
Au⁃TiO2 | 1.5 | 3.1 | 20 | 67 | 41 | ca. 99 |
Ag⁃TiO2 | 1.7 | 2.1 | 16 | 51 | 39 | ca. 43 |
Photocatalyst | Light source | Plasmonic NPs | Main product | Side product | Highest rate/(μmol·g-1·h-1) | AQE(%) | Ref. |
---|---|---|---|---|---|---|---|
Cu@Cu2O/C⁃350 | Visible light irradiation (420 nm<λ<780 nm) | Cu | HCOOH | — | 31 μg/h | 0.12(560 nm) | [ |
ZnO⁃Cu⁃CdS | 300 W Xe lamp | Cu | CH4 | CO | 890 | 8.8(420 nm) | [ |
Au⁃3DOM TiO2 | 300 W Xe lamp λ>420 nm | Au | CH4 | — | 23.1 | — | [ |
Ag⁃TiO2 hollow sphere | 300 W Xe lamp λ>420 nm | Ag | CH4 | — | 1.5 | — | [ |
Pd⁃Au/Al2O3 | Xe lampλ>420 nm | Au | CH4 | — | 930.3 | — | [ |
Pt⁃Au/SiO2 | Visible light 300 nm<λ<800 nm | Au | CO | H2 | 68.6 | 2.83(520 nm) | [ |
Table 2 Photocatalysts developed using the SPR effect of Au NPs, Ag NPs
Photocatalyst | Light source | Plasmonic NPs | Main product | Side product | Highest rate/(μmol·g-1·h-1) | AQE(%) | Ref. |
---|---|---|---|---|---|---|---|
Cu@Cu2O/C⁃350 | Visible light irradiation (420 nm<λ<780 nm) | Cu | HCOOH | — | 31 μg/h | 0.12(560 nm) | [ |
ZnO⁃Cu⁃CdS | 300 W Xe lamp | Cu | CH4 | CO | 890 | 8.8(420 nm) | [ |
Au⁃3DOM TiO2 | 300 W Xe lamp λ>420 nm | Au | CH4 | — | 23.1 | — | [ |
Ag⁃TiO2 hollow sphere | 300 W Xe lamp λ>420 nm | Ag | CH4 | — | 1.5 | — | [ |
Pd⁃Au/Al2O3 | Xe lampλ>420 nm | Au | CH4 | — | 930.3 | — | [ |
Pt⁃Au/SiO2 | Visible light 300 nm<λ<800 nm | Au | CO | H2 | 68.6 | 2.83(520 nm) | [ |
Sample | Ni12P5 TEM mean particle size/nm | CO rate/(mmol·g | CO selectivity(%) |
---|---|---|---|
Ni12P5 | 86±30 | 156±3 | 99.5±0.1 |
10.4% Ni12P5/SiO2 | 13±7 | 960±12 | 99.7±0.1 |
5.2% Ni12P5/SiO2 | 9±3 | 678±13 | 99.7±0.1 |
3.1% Ni12P5/SiO2 | 8±4 | 334±10 | 99.7±0.1 |
Table 3 Summary of the properties and catalytic performance of representative Ni12P5 samples
Sample | Ni12P5 TEM mean particle size/nm | CO rate/(mmol·g | CO selectivity(%) |
---|---|---|---|
Ni12P5 | 86±30 | 156±3 | 99.5±0.1 |
10.4% Ni12P5/SiO2 | 13±7 | 960±12 | 99.7±0.1 |
5.2% Ni12P5/SiO2 | 9±3 | 678±13 | 99.7±0.1 |
3.1% Ni12P5/SiO2 | 8±4 | 334±10 | 99.7±0.1 |
Photocatalyst | Light source | Main product | Side product | Rate of main product/(μmol·g-1·h-1) | Ref. |
---|---|---|---|---|---|
1∶10⁃GaP/TiO2 | 1500 W high pressure Xe lamp | CH4 | — | 11.818 | [ |
In2O3@InP60/Cu2O⁃1 | 300 W Xe lamp | CH4 | CO | 7.76 | [ |
Ni2P/NiO/CN(0.25) | Visible⁃light from a Xe lamp(PLS⁃SXE300UV) λ>420 nm | CO | CH4 | 1.506 | [ |
Table 4 Typical photocatalytic CO2 reduction systems using transition metal phosphides as co-catalysts
Photocatalyst | Light source | Main product | Side product | Rate of main product/(μmol·g-1·h-1) | Ref. |
---|---|---|---|---|---|
1∶10⁃GaP/TiO2 | 1500 W high pressure Xe lamp | CH4 | — | 11.818 | [ |
In2O3@InP60/Cu2O⁃1 | 300 W Xe lamp | CH4 | CO | 7.76 | [ |
Ni2P/NiO/CN(0.25) | Visible⁃light from a Xe lamp(PLS⁃SXE300UV) λ>420 nm | CO | CH4 | 1.506 | [ |
1 | Gao S., Lin Y., Jiao X., Sun Y., Luo Q., Zhang W., Li D., Yang J., Xie Y., Nature, 2016, 529, 68—71 |
2 | Schwartz S. E., Energy Environ. Sci., 2008, 1, 430—453 |
3 | Ross M. B., De Luna P., Li Y., Dinh C. T., Kim D., Yang P., Sargent E. H., Nat. Catal., 2019, 2, 648—658 |
4 | Chang X., Wang T., Gong J., Energy Environ. Sci., 2016, 9, 2177—2196 |
5 | Butburee T., Sun Z., Centeno A., Xie F., Zhao Z., Wu D., Peerakiatkhajohn P., Thaweesak S., Wang H., Wang L., Nano Energy, 2019, 62, 426—433 |
6 | Liu X., Chen T., Xue Y., Fan J., Shen S., Hossain M. S. A. A., Amin M. A., Pan L., Xu X., Yamauchi Y., Coord. Chem. Rev., 2022, 459, 214440 |
7 | Wang L., Wan J., Zhao Y., Yang N., Wang D., J. Am. Chem. Soc., 2019, 141, 2238—2241 |
8 | Jiang M. P., Huang K. K., Liu J. H., Wang D., Wang Y., Wang X., Li Z. D., Wang X.Y., Geng Z. B., Hou X. Y., Feng S. H., Chem, 2020, 6, 2335—2346 |
9 | Qi M. Y., Lin Q., Tang Z. R., Xu Y. J., Appl. Catal. B, 2022, 307, 121158 |
10 | Yang M., Wang P., Li Y., Tang S., Lin X., Zhang H., Zhu Z., Chen F., Appl. Catal. B, 2022, 306, 121065 |
11 | Zhao K., Zhao S., Gao C., Qi J., Yin H., Wei D., Mideksa M. F., Wang X., Gao Y., Tang Z., Yu R., Small, 2018, 14, 1800762 |
12 | Li D., Kassymova M., Cai X., Zang S. Q., Jiang H. L., Coord. Chem. Rev., 2020, 412, 213262 |
13 | Li X., Wen J., Low J., Fang Y., Yu J., Sci. China Mater., 2014, 57, 70—100 |
14 | Low J., Cheng B., Yu J., Appl. Surf. Sci., 2017, 392, 658—686 |
15 | Mao J., Li K., Peng T. Y., Catal. Sci. Technol., 2013, 3, 2481—2498 |
16 | Ran J., Jaroniec M., Qiao S. Z., Adv. Mater., 2018, 30(7), 1704649 |
17 | Yang C., Li Q., Xia Y., Lv K., Li M., Appl. Surf. Sci., 2019, 464, 388—395 |
18 | Chu W., Zheng Q., Prezhdo O. V., Zhao J., J. Am. Chem. Soc., 2020, 142, 3214—3221 |
19 | Wang H., Peng R., Hood Z. D., Naguib M., Adhikari S. P., Wu Z., ChemSusChem, 2016, 9, 1490—1497 |
20 | An X., Wang W., Wang J., Duan H., Shi J., Yu X., Phys. Chem. Chem. Phys., 2018, 20, 11405—11411 |
21 | Ola O., Maroto⁃Valer M. M., J. Photochem. Photobiol. C, 2015, 24, 16—42 |
22 | Patial S., Kumar R., Raizada P., Singh P., Quyet Van L., Lichtfouse E., Dang Le Tri N., Van⁃Huy N., Environ. Res., 2021, 197, 111134 |
23 | Wen Z. Y., Zhan Z. G., Deng J. H., Feng Y. X., Lei Z., Xiong Z., Zhao Y. C., Zhang J. Y., Advances in New Renewable Energy, 2017, 5, 352—357 |
温智勇, 湛志刚, 邓剑华, 冯永新, 雷泽, 熊卓, 赵永椿, 张军营. 新能源进展, 2017, 5, 352—357 | |
24 | Li K., Teng C., Wang S., Min Q. H., Front. Chem., 2021, 9, 637501 |
25 | Wang Q., Domen K., Chem. Rev., 2020, 120, 919—985 |
26 | Ong W. J., Tan L. L., Ng Y. H., Yong S. T., Chai S. P., Chem. Rev., 2016, 116, 7159—7329 |
27 | Marschall R., Adv. Funct. Mater., 2014, 24, 2421—2440 |
28 | Lin J., Tian W., Zhang H., Duan X., Sun H., Wang S., Energy Fuels, 2021, 35, 7—24 |
29 | Sun S., Watanabe M., Wu J., An Q., Ishihara T., J. Am. Chem. Soc., 2018, 140, 6474—6482 |
30 | Stratakis M., Garcia H., Chem. Rev., 2012, 112, 4469—4506 |
31 | Ciriminna R., Falletta E., Della Pina C., Teles J. H., Pagliaro M., Angew. Chem. Int. Ed., 2016, 55, 14209—14216 |
32 | van Deelen T. W., Mejia C. H., de Jong K. P., Nat. Catal., 2019, 2, 955—970 |
33 | Zhang F., Li Y. H., Qi M. Y., Tang Z. R., Xu Y. J., Appl. Catal. B, 2020, 268, 118380 |
34 | Wang H., Cheng S., Cai X., Cheng L., Zhou R., Hou T., Li Y., Catal. Commun., 2022, 162, 106372 |
35 | Xie S., Wang Y., Zhang Q., Deng W., Wang Y., ACS Catal., 2014, 4, 3644—3653 |
36 | Ma X., Li D., Jiang Y., Jin H., Bai L., Qi J., You F., Yuan F., J. Colloid Interf. Sci., 2022, 628, 768—776 |
37 | Xue H. R., Wang T., Gong H., Guo H., Fan X. L., Gao B., Feng Y. Y., Meng X. G., Huang X. L., He J. P., Chem. Asian J., 2018, 13, 577—583 |
38 | Li G., Sun Y., Zhang Q., Gao Z., Sun W., Zhou X., Chem. Eng. J., 2021, 410, 128397 |
39 | Ahmad I., Shukrullah S., Naz M. Y., Bhatti H. N., Dalton Trans., 2023, 52, 6343—6359 |
40 | Jiao J., Wei Y., Zhao Z., Zhong W., Liu J., Li J., Duan A., Jiang G., Catal. Today, 2015, 258, 319—326 |
41 | Feng S., Wang M., Zhou Y., Li P., Tu W., Zou Z., APL Mater., 2015, 3(10), 104416 |
42 | Liu H., Li M., Thang Duy D., Liu Y., Zhou W., Liu L., Meng X., Nagao T., Ye J., Nano Energy, 2016, 26, 398—404 |
43 | Song H., Meng X., Dao T. D., Zhou W., Liu H., Shi L., Zhang H., Nagao T., Kako T., Ye J., ACS Appl. Mater. Interf., 2018, 10, 408—416 |
44 | Tan H., Xiao S., Yao S. R., Xiong C. R., Fine Chemicals, 2019, 36, 1210—1216 |
谈恒, 肖洒, 姚淑荣, 熊春荣. 精细化工, 2019, 36, 1210—1216 | |
45 | Nogueira A. E., Silva G. T. S. T., Oliveira J. A., Lopes O. F., Torres J. A., Carmo M., Ribeiro C., ACS Appl. Energy Mater., 2020, 3, 7629—7636 |
46 | Nakajima K., Baba Y., Noma R., Kitano M., Kondo J. N., Hayashi S., Hara M., J. Am. Chem. Soc., 2011, 133, 4224—4227 |
47 | Dou Y., Zhou A., Yao Y., Lim S. Y., Li J. R., Zhang W., Appl. Catal. B, 2021, 286, 119876 |
48 | Matejova L., Koci K., Reli M., Capek L., Hospodkova A., Peikertova P., Matej Z., Obalova L., Wach A., Kustrowski P., Kotarba A., Appl. Catal. B, 2014, 152, 172—183 |
49 | Su J., Wei Y., Vayssieres L., J. Phys. Chem. Lett., 2017, 8, 5228—5238 |
50 | Island J. O., Blanter S. I., Buscema M., van der Zant H. S. J., Castellanos⁃Gomez A., Nano Lett., 2015, 15, 7853—7858 |
51 | Wang J., Chao D., Liu J., Li L., Lai L., Lin J., Shen Z., Nano Energy, 2014, 7, 151—160 |
52 | You F. F., Wan J. W., Qi J., Mao D., Yang N. L., Zhang Q. H., Gu L., Wang D., Angew. Chem. Int. Ed., 2020, 59, 721—724 |
53 | Li X., Xu A., Fan H., Liu X., Wang J., Cao J., Yang L., Wei M., J. Power Sources, 2022, 545, 231923 |
54 | Li J., Cai L., Shang J., Yu Y., Zhang L., Adv. Mater., 2016, 28, 4059—4064 |
55 | Liu Y., Ye S., Xie H., Zhu J., Shi Q., Ta N., Chen R., Gao Y., An H., Nie W., Jing H., Fan F., Li C., Adv. Mater., 2020, 32(7), 1906513 |
56 | Chen X., Wang J., Chai Y., Zhang Z., Zhu Y., Adv. Mater., 2021, 33(7), 2007479 |
57 | Chen Q., Chen X., Jiang Q., Zheng Z., Song Z., Zhao Z., Xie Z., Kuang Q., Appl. Catal. B, 2021, 297, 120394 |
58 | Cao S., Wang C. J., Fu W. F., Chen Y., ChemSusChem, 2017, 10, 4306—4323 |
59 | Ji X. H., Wang Z. M., Chen X. Y., Yu R. B., Chem. J. Chinese Universities, 2021, 42(5), 1377—1394 |
季小好, 王祖民, 陈晓煜, 于然波. 高等学校化学学报, 2021, 42(5), 1377—1394 | |
60 | Von Schnering H. G., Hoenle W., Chem. Rev., 1988, 88(1), 243—273 |
61 | Blanchard P. E. R., Grosvenor A. P., Cavell R. G., Mar A., Chem. Mater., 2008, 20, 7081—7088 |
62 | Callejas J. F., Read C. G., Roske C. W., Lewis N. S., Schaak R. E., Chem. Mater., 2016, 28(1), 6017—6044 |
63 | Diplas S., Lovvik O. M., J. Phys. Condens. Matter, 2009, 21(24), 245503 |
64 | Xu Y. F., Duchesne P. N., Wang L., Tavasoli A., Jelle A. A., Xia M., Liao J. F., Kuang D. B., Ozin G. A., Nat. Commun., 2020, 11, 5149 |
65 | Marcì G., García⁃López E. I., Palmisano L., Catal. Commun., 2014, 53, 38—41 |
66 | Wang Y., Xu J., Wan J., Wang J., Wang L., J. Colloid Interface Sci., 2022, 616, 532—539 |
67 | Li Q., Feng W., Liu Y., Chen D., Wu Z., Wang H., J. Mater. Chem. A, 2022, 10, 15752—15765 |
68 | Balogun M. S., Huang Y., Qiu W., Yang H., Ji H., Tong Y., Mater. Today, 2017, 20, 425—451 |
69 | Nguyen N. T., Xia M., Duchesne P. N., Wang L., Mao C., Jelle A. A., Yan T., Li P., Lu Z. H., Ozin G. A., Nano Lett., 2021, 21, 1311—1319 |
70 | Yi H., Huang D., Qin L., Zeng G., Lai C., Cheng M., Ye S., Song B., Ren X., Guo X., Appl. Catal. B, 2018, 239, 408—424 |
71 | Zhang Y., Zeng G. M., Tang L., Chen J., Zhu Y., He X. X., He Y., Anal. Chem., 2015, 87, 989—996 |
72 | Kim J. K., Park G. D., Kim J. H., Park S. K., Kang Y. C., Small, 2017, 13(27), 1700068 |
73 | Sun Z., Guo J., Zhu S., Mao L., Ma J., Zhang D., Nanoscale, 2014, 6, 2186—2193 |
74 | Chen M., Zhou S., Zeng G., Zhang C., Xu P., Nano Today, 2018, 20, 7—9 |
75 | Ahmad I., Shukrullah S., Naz M. Y., Bhatti H. N., Ahmad M., Ahmed E., Ullah S., Hussien M., J. Environ. Chem. Eng., 2022, 10(3), 107762 |
76 | Faraz M., Naqvi F. K., Shakir M., Khare N., New J. Chem., 2018, 42, 2295—2305 |
77 | Zhu J., Jiang Z., Int. J. Electrochem. Sci., 2021, 16(3), 210318 |
78 | Zhang J., Shao S., Zhou D., Xu Q., Wang T., J. CO2 Util., 2021, 50, 101584 |
79 | Zhu X. W., Ji H. Y., Yi J. Y., Yang J. M., She X. J., Ding P. H., Li L., Deng J. J., Qian J. C., Xu H., Li H. M., Ind. Eng. Chem. Res., 2018, 57, 17394—17400 |
80 | Li X., Song X., Ma C., Cheng Y., Shen D., Zhang S., Liu W., Huo P., Wang H., ACS Appl. Nano Mater., 2020, 3, 1298—1306 |
81 | Wang L., Dong Y., Zhang J., Tao F., Xu J., J. Solid State Chem., 2022, 308, 122878 |
82 | Feng Z., Zeng L., Chen Y., Ma Y., Zhao C., Jin R., Lu Y., Wu Y., He Y., J. Mater. Res., 2017, 32, 3660—3668 |
83 | Rodriguez V., Camarillo R., Martinez F., Jimenez C., Rincon J., J. Supercrit Fluids, 2020, 163, 104876 |
84 | Jung H., Kim C., Yoo H. W., You J., Kim J. S., Jamal A., Gereige I., Ager J. W., Jung H. T., Energy Environ. Sci., 2023, 16(7), 2869—2878 |
85 | Ding C., Lu X., Tao B., Yang L., Xu X., Tang L., Chi H., Yang Y., Meira D. M., Wang L., Zhu X., Li S., Zhou Y., Zou Z., Adv. Funct. Mater., 2023, 33(35), 2302824 |
[1] | ZHANG Lifu, WANG Xinkang, CHEN Yiwang. New Strategy to Balance the Miscibility and Phase Separation to Improve Organic Solar Cells Efficiency [J]. Chem. J. Chinese Universities, 2023, 44(9): 20230177. |
[2] | CAO Shengzhe, HUANG Xin, YANG Zhihong. First-principles Study of Direct Z-scheme In2SSe/Sb Heterostructure as Photocatalyst for Water Splitting [J]. Chem. J. Chinese Universities, 2023, 44(8): 20230145. |
[3] | WEN Min, LI Haojie, LI Junliang, LIU Siqi, HU Xiaotian, CHEN Yiwang. Advances in Pseudo-planar Heterojunction Organic Photovoltaic Devices [J]. Chem. J. Chinese Universities, 2023, 44(7): 20230174. |
[4] | CHI Liping, NIU Zhuangzhuang, LIAO Jie, TANG Kaibin, GAO Minrui. Recent Progress in Intercalation Chemistry of Transition Metal Oxides for Electrocatalytic Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220740. |
[5] | LIU Shuanghong, XIA Siyu, LIU Shiqi, LI Min, SUN Jiajie, ZHONG Yong, ZHANG Feng, BAI Feng. Current Advances of Hollow All-solid-state Z-Scheme Photocatalysts [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220512. |
[6] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[7] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[8] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[9] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[10] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[11] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[12] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[13] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[14] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[15] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||