Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (5): 20220740.doi: 10.7503/cjcu20220740
• Review • Previous Articles Next Articles
CHI Liping, NIU Zhuangzhuang, LIAO Jie, TANG Kaibin(), GAO Minrui(
)
Received:
2022-11-28
Online:
2023-05-10
Published:
2023-02-24
Contact:
TANG Kaibin, GAO Minrui
E-mail:kbtang@ustc.edu.cn;mgao@ustc.edu.cn
Supported by:
CLC Number:
TrendMD:
CHI Liping, NIU Zhuangzhuang, LIAO Jie, TANG Kaibin, GAO Minrui. Recent Progress in Intercalation Chemistry of Transition Metal Oxides for Electrocatalytic Applications[J]. Chem. J. Chinese Universities, 2023, 44(5): 20220740.
Fig.2 Crystal structures of some representative host materials for intercalation(A) Cubic WO3/MoO3; (B) hexagonal WO3/MoO3; (C) VO2; (D) V2O5; (E) anatase TiO2; (F) TiO2(B).
Fig.3 Structural representation of a double⁃layer in α⁃MoO3(A), Raman spectra of the MoO3 deposited on quartz(blue line), glass(red line), FTO(green line) and ITO(black line) substrates before(B) and after(C) H2 exposure[57], calculated energy difference of pristine h⁃WO3 and alkali⁃metal⁃intercalated(Na, K) h⁃WO3(D) and side view of optimized stable structures of Na0.33WO3 and K0.33WO3(E)[61], the calculated diffusion barriers of ions in the three vanadium oxides(F) and the energy profile for the diffusion in VO2(R)(G)[63]
Fig.4 Sequence of intercalation⁃induced phase transformations in V2O5(A)[34], the lattice parameters and the volume fractions of TTB and CTB phases as a function of x(B) and the temperature⁃composition phase diagram of TTB(C)[77], phase diagram of Li composition in anatase TiO2 with crystal size change based on the neutron diffraction results(D) and neutron diffraction patterns of maximum lithiated Li x TiO2 for different particle sizes(E, F)[81](A) Copyright 2018, American Chemical Society; (B, C) Copyright 2017, Wiley-VCH; (D—F) Copyright 2007, American Chemical Society.
Fig.5 The schematic diagram of the contacted electron⁃proton co⁃doping mechanism with the metal⁃acid treatment to semiconductor(A), the resistance measurement for the Cu⁃acid⁃treated Cu⁃VO2 as the function of heated temperature in air(B) and hydrogenation effects induced by different metals(C)[95], discoloration effect and one⁃step synthesis of H x MO3 using liquid metal at room temperature(D), electrode potential of H x WO3 and eGaInSn in HCl solution with different concentrations(E) and photographs of powders and corresponding suspension in deionized water of initial WO3 and different H x WO3 powders(F)[17]
Fig.6 Schematic illustration of the device geometry for the ionic⁃liquid⁃gating experiment(A), carrier density ns(measured at 2 K) and fitting parameter f as a function of gating⁃voltage(VG)(B) and VG dependence of the lattice parameter(Doop) for a 20⁃nm⁃thick WO3 film and its estimated H⁃dopant concentration(x, blue squares) according to the chemical expansion(C)[102], the gating diagram of the VO2 device with drain, source, and gate electrodes(D), the reversible phase modulations by different voltages as a function of gating time(E) and a cycling resistance test plot at a sweep rate of 0.1 mV/s and a source⁃drain voltage of 0.3 V(F)[106]
Fig.7 Schematic illustration of the processes involved in H2 exchange with WO3(A), experimental curves of intercalation(low⁃pressure hydrogen mixture)(B) and deintercalation curves(vacuum atmosphere) at different temperatures(C)[18], schematic picture for the transition process between conventional TiO2 and black TiO2(D), light extinction coefficient as a function of ion implantation time(E), the absorption spectra of TiO2 film before and after 4 min H+ ion implantation and the recovered TiO2 film(F)[123]
Fig.8 Schematic of ZnO structure evolution by the voltage profile of Li electrochemical tuning method(A), comparisons of CO partial current densities between LiET⁃Zn and OD⁃Zn(B) and FEs of H2 and CO of LiET⁃Zn supported on glassy carbon electrode in CO2⁃saturated 0.1 mol/L KHCO3(C)[53], scheme of VLi⁃tuned [CuO4] sites that promote C⁃C coupling(D), corresponding energy diagrams of C⁃C coupling for pristine Li2CuO2(E) and Li2-x CuO2(F), LSV curves of Li2CuO2 and Li2-x CuO2 catalysts in flow cells with 1 mol/L KOH aqueous electrolyte and CO2 gas(G), the selectivity(H) and partial current density(I) for CO2⁃to⁃C2+ on the Li2-x CuO2⁃10 catalyst at various applied potentials[154]
Fig.9 OER catalytic activities of CoO/CNF in 0.1 mol/L KOH under different galvanostatic cycles(A), the Tafel plots of OER polarization curves(B) and electrochemical double layer capacitance of CoO/CNF under different cycles(C)[144], schematic representations of HOR catalysis by WO x mixed electron⁃proton conduction membrane interface(D), cyclic voltammogram of the Pt/WO x composite electrode(E) and steady⁃state HOR current density of the Pt/WO x composite electrode in the presence of gaseous impurities dissolved in the electrolyte(F)[178]
1 | Schauffaütl P., J. Prakt. Chem., 1841, 21, 155 |
2 | Rüdorff W., Angew. Chem. Int. Ed., 1959, 71(15/16), 487—491 |
3 | Hai Z. Y., Zhuiykov S., Adv. Mater. Interfaces, 2018, 5(7), 1701385 |
4 | Frank S. G., J. Pharm. Sci., 1975, 64(10), 1585—1604 |
5 | Vladimir S. B., Alexander M. S., Volfkovich Y. M., Electrochemical Power Sources, John Wiley and Sons Press, Hoboken, 2014, 73—76 |
6 | Dresselhaus M. S., MRS Bull., 1987, 12, 24—28 |
7 | Lu Z. Y., Jiang K., Chen G. X., Wang H. T., Cui Y., Adv. Mater., 2018, 30(48), 1800978 |
8 | Thummavichai K., Xia Y. D., Zhu Y. Q., Prog. Mater. Sci., 2017, 88, 281—324 |
9 | Chernova N. A., Roppolo M., Dillon A. C., Whittingham M. S., J. Mater. Chem., 2009, 19(17), 2526—2552 |
10 | Ambroz F., Macdonald T., Nann T., Adv. Energy Mater., 2017, 7, 1602093 |
11 | Xu J. T., Dou Y. H., Wei Z. X., Ma J. M., Deng Y. H., Li Y. T., Liu H. K., Dou S. X., Adv. Sci., 2017, 4(10), 1700146 |
12 | Gao M. R., Chan M. K. Y., Sun Y. G., Nat. Commun., 2015, 6(1), 7493 |
13 | Zheng H. D., Ou J., Strano M., Kaner R., Mitchell A., Kalantar⁃Zadeh K., Adv. Funct. Mater., 2011, 21, 2175—2196 |
14 | Huang Z. F., Song J. J., Pan L., Zhang X. W., Wang l., Zou J. J., Adv. Mater., 2015, 27, 5309—5327 |
15 | Castro F., Tonus F., Bobet J. L., Urretavizcaya G., J. Alloys Compd., 2010, 495(2), 537—540 |
16 | Wiseman P. J., Dickens P. G., J. Solid State Chem., 1973, 6(3), 374—377 |
17 | Cui Y. T., Liang F., Ji C., Xu S., Wang H. Z., Lin Z. S., Liu J., ACS Omega, 2019, 4(4), 7428—7435 |
18 | Mattoni G., de Jong B., Manca N., Tomellini M., Caviglia A. D., ACS Appl. Nano Mater., 2018, 1(7), 3446—3452 |
19 | Zhong Q. M., Colbow K., Thin Solid Films, 1991, 196(2), 305—313 |
20 | Hjelm A., Granqvist C., Wills J., Phys. Rev., B Condens. Matter, 1996, 54(4), 2436—2445 |
21 | Wen R. T., Granqvist C. G., Niklasson G. A., Nat. Mater., 2015, 14, 996—1001 |
22 | El⁃Sayed A., Mousa S., Indian J. Chem. Technol., 2005, 79, 1135—1142 |
23 | He Y., Gu M., Xiao H. Y., Luo L. L., Shao Y. Y., Gao F., Du Y. G., Mao S., Wang C. M., Angew. Chem. Int. Ed., 2016, 55(21), 6244 |
24 | Lahan H., Das S. K., Dalton Trans., 2019, 48(19), 6337—6340 |
25 | Huang Q. Q., Hu S., Zhuang J., Wang X., Chem. Eur. J., 2012, 18(48), 15283—15287 |
26 | Raj S., Sato T., Souma S., Takahashi T., Sarma D. D., Mahadevan P., Mod. Phys. Lett. B, 2009, 23(24), 2819—2846 |
27 | Wu X. Y., Li Y., Zhang G. K., Chen H., Li J., Wang K., Pan Y., Zhao Y., Sun Y. F., Xie Y., J. Am. Chem. Soc., 2019, 141(13), 5267—5274 |
28 | Chen L., Lam S. W., Zeng Q. H., Amal R., Yu A. B., J. Phys. Chem. C, 2012, 116(21), 11722—11727 |
29 | Mi Q. X., Ping Y., Li Y., Cao B. F., Brunschwig B. S., Khalifah P. G., Galli G. A., Gray H. B., Lewis N. S., J. Am. Chem. Soc., 2012, 134(44), 18318—18324 |
30 | Liu M. S., Su B., Tang Y., Jiang X. C., Yu A. B., Adv. Energy Mater., 2017, 7(23), 1700885 |
31 | Liu Q., Tan G. Q., Wang P., Abeyweera S. C., Zhang D. T., Rong Y. C., Wu Y. A., Lu J., Sun C. J., Ren Y., Liu Y. Z., Muehleisen R. T., Guzowski L. B., Li J., Xiao X. H., Sun Y. G., Nano Energy, 2017, 36, 197—205 |
32 | Yang S. B., Gong Y. J., Liu Z., Zhan L., Hashim D. P., Ma L. L., Vajtai R., Ajayan P. M., Nano Lett., 2013, 13(4), 1596—1601 |
33 | Clites M., Pomerantseva E., Energy Stor. Mater., 2018, 11, 30—37 |
34 | De Jesus L. R., Andrews J. L., Parija A., Banerjee S., ACS Energy Lett., 2018, 3(4), 915—931 |
35 | Peng X., Zhang X. M., Wang L., Hu L. S., Cheng S. H. S., Huang C., Gao B., Ma F., Huo K. F., Chu P. K., Adv. Funct. Mater., 2016, 26(5), 784—791 |
36 | Fujishima A., Honda K., Nature, 1972, 238(5358), 37—38 |
37 | Chen X., Liu L., Yu P., Mao Y., Science, 2011, 331, 746—750 |
38 | Wang H. Y., Ling Y. C., Tang Y. C., Yang X. Y., Fitzmorris B., Wang C. C., Zhang J., Li H. H., Nano Lett., 2011, 11( 7), 3026—3033 |
39 | Zhu T., Gao S. P., J. Phys. Chem. C, 2014, 118(21), 11385—11396 |
40 | Chen K., Shen T., Lu Y., Hu Y. Z., Wang J. Y., Zhang J., Wang D. L., J. Energy Chem., 2022, 67, 168—183 |
41 | Zheng M. B., Tang H., Li L. L., Hu Q., Zhang L., Xue H. G., Pang H., Adv. Sci., 2018, 5(3), 1700592 |
42 | Fröschl T., Hörmann U., Kubiak P., Kučerová G., Pfanzelt M., Weiss C. K., Behm R. J., Hüsing N., Kaiser U., Landfester K., Wohlfahrt⁃Mehrens M., Chem. Soc. Rev., 2012, 41(15), 5313—5360 |
43 | Chen J. S., Tan Y. L., Li C. M., Cheah Y. L., Luan D. Y., Madhavi S., Boey F. Y. C., Archer L. A., Lou X. W., J. Am. Chem. Soc., 2010, 132(17), 6124—6130 |
44 | Wagemaker M., Kentgens A. P. M., Mulder F. M., Nature, 2002, 418(6896), 397—399 |
45 | Aricò A. S., Bruce P., Scrosati B., Tarascon J. M., van Schalkwijk W., Nat. Mater., 2005, 4(5), 366—377 |
46 | Reddy M. V., Subba Rao G. V., Chowdari B. V. R., Chem. Rev., 2013, 113(7), 5364—5457 |
47 | Liu H. S., Bi Z. H., Sun X. G., Unocic R. R., Paranthaman M. P., Dai S., Brown G. M., Adv. Mater., 2011, 23(30), 3450—3454 |
48 | Qiao H., Wang Y. W., Xiao L. F., Zhang L. Z., Electrochem. Commun., 2008, 10(9), 1280—1283 |
49 | Deng Q. L., Fu Y. P., Zhu C. B., Yu Y., Small, 2019, 15(32), 1804884 |
50 | Chen D. C., Wang J. H., Chou T. F., Zhao B. T., El⁃Sayed M. A., Liu M. L., J. Am. Chem. Soc., 2017, 139(20), 7071—7081 |
51 | Yadav G. G., Gallaway J. W., Turney D. E., Nyce M., Huang J. C., Wei X., Banerjee S., Nat. Commun., 2017, 8(1), 14424 |
52 | Seo J. K., Shin J., Chung H., Meng P. Y., Wang X. F., Meng Y. S., J. Phys. Chem. C, 2018, 122(21), 11177—11185 |
53 | Jiang K., Wang H., Cai W. B., Wang H., ACS Nano, 2017, 11(6), 6451—6458 |
54 | Lin Z. Y., Du C., Yan B., Wang C. X., Yang G. W., Nat. Commun., 2018, 9(1), 4036 |
55 | Wang M. J., Koski K. J., ACS Nano, 2015, 9(3), 3226—3233 |
56 | Ritter C., Müller⁃Warmuth W., Schöllhorn R., J. Chem. Phys., 1985, 83(12), 6130—6138 |
57 | Ou J. Z., Campbell J. L., Yao D., Wlodarski W., Kalantar⁃Zadeh K., J. Phys. Chem. C, 2011, 115(21), 10757—10763 |
58 | Sha X. W., Chen L., Cooper A. C., Pez G. P., Cheng H. S., J. Phys. Chem. C, 2009, 113(26), 11399—11407 |
59 | Thummavichai K., Xia Y., Zhu Y., Prog. Mater. Sci., 2017, 88, 281—324 |
60 | Krüger P., Koutiri I., Bourgeois S., Phys. Rev. B, 2012, 86(22), 224102 |
61 | Lee Y., Lee T., Jang W., Soon A., Chem. Mater., 2016, 28(13), 4528—4535 |
62 | Chen C. J., Wen Y. W., Hu X. L., Ji X. L., Yan M. Y., Mai L. Q., Hu P., Shan B., Huang Y. H., Nat. Commun., 2015, 6, 6929 |
63 | Kulish V. V., Manzhos S., RSC Adv., 2017, 7(30), 18643—18649 |
64 | Yoon H., Choi M., Lim T. W., Kwon H., Ihm K., Kim J. K., Choi S. Y., Son J., Nat. Mater., 2016, 15, 1113—1119 |
65 | Lin J., Ji H., Swift M., Hardy W., Peng Z. W., Fan X. J., Nevidomskyy A., Tour J., Natelson D., Nano Lett., 2014, 14(9), 5445—5451 |
66 | Warnick K., Wang B., Pantelides S., Appl. Phys. Lett., 2014, 104, 101913 |
67 | Song X. Y., Kinoshita K., Tran T., J. Electrochem. Soc., 1996, 143(6), 120—123 |
68 | Stark M. S., Kuntz K. L., Martens S. J., Warren S. C., Adv. Mater., 2019, 31(27), 1808213—1808259 |
69 | Galy J., Satto C., Sciau P., Millet P., J. Solid State Chem., 1999, 146(1), 129—136 |
70 | Satto C., Sciau P., Millet P., Galy J., Dooryhee E., J. Solid State Chem., 1999, 146(1), 103—109 |
71 | Murphy D. W., Christian P. A., DiSalvo F. J., Waszczak J. V., lnorg. Chem., 1979, 18(10), 2800—2803 |
72 | Wang W. J., Wang H. Y., Liu S. Q., Huang J. H., J. Solid State Electrochem., 2012, 16, 2555—2561 |
73 | Horrocks G., Likely M., Velazquez J., Banerjee S., J. Mater. Chem. A, 2013, 1, 15265—15277 |
74 | Galy J., J. Solid State Chem., 1992, 100(2), 229—245 |
75 | Whittingham M. S., Dines M. B., J. Electrochem. Soc., 1977, 124(9), 1387—1388 |
76 | Genin C., Driouiche A., Gérand B., Figlarz M., Solid State Ion, 1992, 53—56, 315—323 |
77 | Ikeuchi Y., Takatsu H., Tassel C., Goto Y., Murakami T., Kageyama H., Angew. Chem. Int. Ed., 2017, 56(21), 5770—5773 |
78 | Wang J. H., Liu G. Q., Du Y. W., Mater. Lett., 2003, 57(22/23), 3648—3652 |
79 | Hu Y. S., Kienle L., Guo Y. G., Maier J., Adv. Mater., 2006, 18(11), 1421—1426 |
80 | Kavan L., Kalbáč M., Zukalová M., Exnar I., Lorenzen V., Nesper R., Graetzel M., Chem. Mater., 2004, 16(3), 477—485 |
81 | Wagemaker M., Borghols W. J. H., Mulder F. M., J. Am. Chem. Soc., 2007, 129(14), 4323—4327 |
82 | Dresselhaus M. S., Dresselhaus G., Adv. Phys., 2002, 51(1), 1—186 |
83 | Ebert L. B., Annu. Rev. Mater. Sci., 1976, 6(1), 181—211 |
84 | Laipan M. W., Xiang L. C., Yu J. F., Martin B., Zhu R. L., Zhu J. X., He H. P., Clearfield A., Sun L. Y., Prog. Mater. Sci., 2019, 109, 100631 |
85 | Koo S., Lee J., Lee J., Yoon S., Kim D., Energy Stor. Mater., 2021, 42, 764—772 |
86 | Zhou L., Yang L. C., Yuan P., Zou J., Wu Y. P., Yu C. Z., J. Phys. Chem. C, 2010, 114(49), 21868—21872 |
87 | Wu C. Q., Xie H., Li D. D., Liu D. B., Ding S. Q., Tao S., Chen H., Liu Q., Chen S. M., Chu W. S., Zhang B., Song L., J. Phys. Chem. Lett., 2018, 9(4), 817—824 |
88 | Shi X. M., Li J. C., Lang X. Y., Jiang Q., J. Phys. Chem. C, 2017, 121(11), 5974—5982 |
89 | Yu M. H., Shao H., Wang G., Yang F., Liang C. L., Rozier P., Wang C. Z., Lu X. H., Simon P., Feng X. L., Nat. Commun., 2020, 11, 1348 |
90 | Kanatzidis M. G., Marks T. J., Inorg. Chem., 1987, 26(6), 783—784 |
91 | Yang J. H., Lu F. Y., Li Y., Yang S. X., Li R. X., Huo N. J., Fan C., Wei Z. M., Li J. B., Li S. S., J. Mater. Chem. C, 2014, 2(6), 1034—1040 |
92 | He R. H., Chen Z. F., Lai H. J., Zhang T. K., Wen J. Z., Chen H. J., Xie F. Y., Yue S., Liu P. Y., Chen J., Xie W. G., Wang X. M., Xu J. B., ACS Appl. Mater. Interfaces, 2019, 11(17), 15741—15747 |
93 | Hu X. K., Qian Y. T., Song Z. T., Huang J. R., Cao R., Xiao J. Q., Chem. Mater., 2008, 20(4), 1527—1533 |
94 | Koketsu T., Ma J. W., Morgan B. J., Body M., Legein C., Dachraoui W., Giannini M., Demortière A., Salanne M., Dardoize F., Groult H., Borkiewicz O. J., Chapman K. W., Strasser P., Dambournet D., Nat. Mater., 2017, 16(11), 1142—1148 |
95 | Chen Y. L., Wang Z. W., Chen S., Ren H., Wang L. X., Zhang G. B., Lu Y. L., Jiang J., Zou C. W., Luo Y., Nat. Commun., 2018, 9(1), 818 |
96 | Zhao Y., Karaoglan⁃Bebek G., Pan X., Holtz M., Bernussi A. A., Fan Z. Y., Appl. Phys. Lett., 2014, 104(24), 241901 |
97 | Xie L. Y., Zhu Q., Zhang G. Z., Ye K., Zou C. W., Prezhdo O. V., Wang Z. W., Luo Y., Jiang J., J. Am. Chem. Soc., 2020, 142(9), 4136—4140 |
98 | Hu Y. X., Zhang T. R., Cheng F. Y., Zhao Q., Han X. P., Chen J., Angew. Chem. Int. Ed., 2015, 54(14), 4338—4343 |
99 | Lukatskaya M., Mashtalir O., Ren C., Dall'Agnese Y., Rozier P., Taberna P., Naguib M., Simon P., Barsoum M., Gogotsi Y., Science, 2013, 341(6153), 1502—1505 |
100 | Canepa P., Sai Gautam G., Hannah D. C., Malik R., Liu M., Gallagher K. G., Persson K. A., Ceder G., Chem. Rev., 2017, 117(5), 4287—4341 |
101 | Lee B., Lee H. R., Kim H., Chung K. Y., Cho B. W., Oh S. H., Chem. Commun., 2015, 51(45), 9265—9268 |
102 | Wang M., Shen S. C., Ni J. Y., Lu N. P., Li Z. L., Li H. B., Yang S. Z., Chen T. Z., Guo J. W., Wang Y. J., Xiang H. J., Yu P., Adv. Mater., 2017, 29(46), 1703628 |
103 | Ji H., Wei J., Natelson D., Nano Lett., 2012, 12(6), 2988—2992 |
104 | Shibuya K., Sawa A., Adv. Electron. Mater., 2015, 2, 1500131 |
105 | Yuan H. T., Shimotani H., Tsukazaki A., Ohtomo A., Kawasaki M., Iwasa Y., J. Am. Chem. Soc., 2010, 132(19), 6672—6678 |
106 | Chen S., Wang Z. W., Ren H., Chen Y. L., Yan W. S., Wang C. M., Li B. W., Jiang J., Zou C. W., Sci. Adv., 2019, 5(3), eaav6815 |
107 | Ma X. C., Dai Y., Yu L., Huang B. B., Sci. Rep., 2014, 4(1), 3986 |
108 | Sun X., Guo Y. Q., Wu C. Z., Xie Y., Adv. Mater., 2015, 27, 3850—3867 |
109 | Chen X. B., Liu L., Yu P., Mao Y., Science, 2011, 331(6018), 746—750 |
110 | Kobayashi Y., Hernandez O. J., Sakaguchi T., Yajima T., Roisnel T., Tsujimoto Y., Morita M., Noda Y., Mogami Y., Kitada A., Ohkura M., Hosokawa S., Li Z. F., Hayashi K., Kusano Y., Kim J. E., Tsuji N., Fujiwara A., Matsushita Y., Yoshimura K., Takegoshi K., Inoue M., Takano M., Kageyama H., Nat. Mater., 2012, 11(6), 507—511 |
111 | Berzins A., Sermon P., Nature, 1983, 303, 506—508 |
112 | Marcq J. P., Poncelet G., Fripiat J. J., J. Catal., 1984, 87(2), 339—351 |
113 | Marcq J. P., Wispenninckx X., Poncelet G.,Keravis D., Fripiat J. J., J. Catal., 1982, 73(2), 309—328 |
114 | Sermon P. A., Bond G. C., Wells P. B., J. Chem. Soc., Faraday Trans. 1, 1979, 75, 385—393 |
115 | Yin H. B., Kuwahara Y., Mori K., Yamashita H., Eur. J. Inorg. Chem., 2019, 2019, 3745—3752 |
116 | Yin H. B., Kuwahara Y., Mori K., Che M., Yamashita H., J. Mater. Chem. A, 2019, 7(8), 3783—3789 |
117 | Kuwahara Y., Yoshimura Y., Haematsu K., Yamashita H., J. Am. Chem. Soc., 2018, 140(29), 9203—9210 |
118 | Cheng H. F., Wen M. C., Ma X. C., Kuwahara Y., Mori K., Dai Y., Huang B. B., Yamashita H., J. Am. Chem. Soc., 2016, 138(29), 9316—9324 |
119 | Li B., Yim W. L., Zhang Q., Chen L., J. Phys. Chem. C, 2010, 114(7), 3052—3058 |
120 | Chen H. J., Xu N. S., Deng S. Z., Lu D. Y., Li Z. L., Zhou J., Chen J., Nanotechnology, 2007, 18(20), 205701 |
121 | Wilcox J. M., Baker W. R., Boley F. I., Cooper W. S., DeSilva A. W., Spillman G. R., J. Nucl. Energy, Part C Plasma Phys., 1962, 4(5), 337—340 |
122 | Elghazaly M. H., Elbaky A. M., Bassyouni A. H., Tuczek H., J. Quant. Spectros. Radiat. Transfer, 1999, 61(4), 503—507 |
123 | Wu Y. K., Yang W. H., Fan Y. B., Song Q. H., Xiao S. M., Sci. Adv., 2019, 5(11), eaax0939 |
124 | Haldolaarachchige N., Gibson Q., Krizan J., Cava R. J., Phys. Rev. B, 2014, 89(10), 104520 |
125 | Whitacre J. F., Tevar A., Sharma S., Electrochem. Commun., 2010, 12(3), 463—466 |
126 | Lu X. L., Wang R. G., Hao L. F., Yang F., Jiao W. C., Zhang J., Peng P., Liu W. B., J. Mater. Chem. C, 2016, 4, 11449—11456 |
127 | Lampande R., Kim G. W., Boizot J., Kim Y. J., Pode R., Kwon J. H., J. Mater. Chem. A, 2013, 1(23), 6895—6900 |
128 | Alsaif M., Chrimes A., Daeneke T., Balendhran S., Bellisario D., Son Y., Field M., Zhang W., Nili H., Nguyen E., Latham K., van Embden J., Strano M., Ou J., Kalantar⁃Zadeh K., Adv. Funct. Mater., 2015, 26, 91—100 |
129 | Alsaif M., Field M., Murdoch B., Daeneke T., Latham K., Chrimes A., Zoolfakar A., Russo S., Ou J., Kalantar⁃Zadeh K., Nanoscale, 2014, 6, 12780—12791 |
130 | Alsaif M., Latham K., Field M., Yao D., Medehkar N., Beane G., Kaner R., Russo S., Ou J., Kalantar⁃Zadeh K., Adv. Mater., 2014, 26, 3931—3937 |
131 | Xie H. G., Li Z., Cheng L., Haidry A. A., Tao J. Q., Xu Y., Xu K., Ou J. Z., iScience, 2022, 25(1), 103598 |
132 | Lu K., Hu Z. Y., Xiang Z. H., Ma J. Z., Song B., Zhang J. T., Ma H. Y., Angew. Chem. Int. Ed., 2016, 55(35), 10448—10452 |
133 | Xiong P., Ma R. Z., Sakai N., Bai X. Y., Li S., Sasaki T., ACS Appl. Mater. Interfaces, 2017, 9(7), 6282—6291 |
134 | Chen Z. W., Ju M., Sun M. Z., Jin L., Cai R. M., Wang Z., Dong L., Peng L. M., Long X., Huang B. L., Yang S. H., Angew. Chem. Int. Ed., 2021, 60(17), 9699—9705 |
135 | Huang Q. K., Zhong X. W., Zhang Q., Wu X., Jiao M. L., Chen B., Sheng J. Z., Zhou G. M., J. Energy Chem., 2022, 68, 679—687 |
136 | Huang W., Peng C., Tang J., Diao F. Y., Nulati Y. M., Sun H. Y., Engelbrekt C., Zhang J. D., Xiao X. X., Mølhave K. S., J. Energy Chem., 2022, 65, 78—88 |
137 | Colton R. J., Guzman A. M., Rabalais J. W., Acc. Chem. Res., 1978, 11(4), 170—176 |
138 | Scarminio J., Lourenço A., Gorenstein A., Thin Solid Films, 1997, 302(1/2), 66—70 |
139 | Tan H. T., Rui X. H., Sun W. P., Yan Q. Y., Lim T. M., Nanoscale, 2015, 7(35), 14595—14607 |
140 | Brezesinski T., Wang J., Tolbert S. H., Dunn B., Nat. Mater., 2010, 9(2), 146—151 |
141 | Augustyn V., Come J., Lowe M. A., Kim J. W., Taberna P. L., Tolbert S. H., Abruña H. D., Simon P., Dunn B., Nat. Mater., 2013, 12(6), 518—522 |
142 | Mitchell J. B., Lo W. C., Genc A., LeBeau J., Augustyn V., Chem. Mater., 2017, 29(9), 3928—3937 |
143 | Choi C., Ashby D. S., Butts D. M., DeBlock R. H., Wei Q. L., Lau J., Dunn B., Nat. Rev. Mater., 2019, 5(1), 5—19 |
144 | Wang H. T., Lee H. W., Deng Y., Lu Z. Y., Hsu P. C., Liu Y. Y., Lin D. C., Cui Y., Nat. Commun., 2015, 6(1), 7261 |
145 | Miu E. V., McKone J. R., Mpourmpakis G., J. Am. Chem. Soc., 2022, 144(14), 6420—6433 |
146 | Zhang X. L., Su X. Z., Zheng Y. R., Hu S. J., Shi L., Gao F. Y., Yang P. P., Niu Z. Z., Wu Z. Z., Qin S., Wu R., Duan Y., Gu C., Zheng X. S., Zhu J. F., Gao M. R., Angew. Chem. Int. Ed., 2021, 60(52), 26922—26931 |
147 | Niu Z. Z., Chi L. P., Liu R., Chen Z., Gao M. R., Energy Environ. Sci., 2021, 14(8), 4169—4176 |
148 | Niu Z. Z., Gao F. Y., Zhang X. L., Yang P. P., Liu R., Chi L. P., Wu Z. Z., Qin S., Yu X. X., Gao M. R., J. Am. Chem. Soc., 2021, 143(21), 8011—8021 |
149 | Chi L. P., Niu Z. Z., Zhang X. L., Yang P. P., Liao J., Gao F. Y., Wu Z. Z., Tang K. B., Gao M. R., Nat. Commun., 2021, 12(1), 5835 |
150 | Wang Z. T., Qi R. J., Liu D. Y., Zhao X. D., Huang L., Chen S. H., Chen Z. Q., Li M. T., You B., Pang Y. J., Yu Xia B., ChemSusChem, 2020, 14(3), 852—859 |
151 | Fan L., Xia C., Zhu P., Lu Y. Y., Wang H. T., Nat. Commun., 2020, 11(1), 3633 |
152 | Jeong H. M., Kwon Y. K., Won J. H., Lum Y. W., Cheng M. J., Kim K. H., Head⁃Gordon M., Kang J. K., Adv. Energy Mater., 2020, 10(10), 1903423 |
153 | Peng C., Luo G., Zhang J. B., Chen M. H., Wang Z. Q., Sham T. K., Zhang L. J., Li Y. F., Zheng G. F., Nat. Commun., 2021, 12(1), 1580 |
154 | Peng C., Zhu X. R., Xu Z. K., Yan S., Chang L. Y., Wang Z. Q., Zhang J. B., Chen M. H., Sham T. K., Li Y. F., Zheng G. F., Small, 2022, 18(8), 2106433 |
155 | Jiang K., Wang H., Cai W. B., Wang H. T., ACS Nano, 2017, 11(6), 6451—6458 |
156 | Wu Y. Z., Cao S. Y., Hou J. G., Li Z. W., Zhang B., Zhai P. L., Zhang Y. T., Sun L. C., Adv. Energy Mater., 2020, 10(29), 2000588 |
157 | Song H. W., Gong Y., Su J., Li Y. W., Li Y., Gu L., Wang C. X., ACS Appl. Mater. Interfaces, 2018, 10(41), 35137—35144 |
158 | Duan Y., Yu Z. Y., Hu S. J., Zheng X. S., Zhang C. T., Ding H. H., Hu B. C., Fu Q. Q., Yu Z. L., Zheng X., Zhu J. F., Gao M. R., Yu S. H., Angew. Chem. Int. Ed., 2019, 58(44), 15772—15777 |
159 | Chen X. Y., Yang J., Cao Y. F., Kong L., Huang J. F., ChemElectroChem, 2021, 8(23), 4427—4440 |
160 | Zhu L. L., Lin H. P., Li Y. Y., Liao F., Lifshitz Y., Sheng M. Q., Lee S. T., Shao M. W., Nat. Commun., 2016, 7(1), 12272 |
161 | Chen J. D., Chen C. H., Qin M. K., Li B., Lin B. B., Mao Q., Yang H. B., Liu B., Wang Y., Nat. Commun., 2022, 13(1), 5382 |
162 | Xie C., Chen W., Du S. Q., Yan D. F., Zhang Y. Q., Chen J., Liu B., Wang S. Y., Nano Energy, 2020, 71, 104653 |
163 | Li J., Wang J. J., Liu Y., Yuan C. Z., Liu G. L., Wu N. T., Liu X. M., Catal. Sci. Technol., 2022, 12(14), 4498—4510 |
164 | Armengol R. A., Lim J., Ledendecker M., Hengge K., Scheu C., Nanoscale Adv., 2021, 3(17), 5075—5082 |
165 | Miu E. V., McKone J. R., Mpourmpakis G., J. Am. Chem. Soc., 2022, 144(14), 6420—6433 |
166 | Lačnjevac U., Vasilić R., Dobrota A., Đurđić S., Tomanec O., Zbořil R., Mohajernia S., Nguyen N. T., Skorodumova N., Manojlović D., Elezović N., Pašti I., Schmuki P., J. Mater. Chem. A, 2020, 8(43), 22773—22790 |
167 | Lu Z. Y., Wang H. T., Kong D., Yan K., Hsu P. C., Zheng G. Y., Yao H. B., Liang Z., Sun X. M., Cui Y., Nat. Commun., 2014, 5(1), 4345 |
168 | Miu E. V., Mpourmpakis G., McKone J. R., ACS Appl. Mater. Interfaces, 2020, 12(40), 44658—44670 |
169 | Choi G., Lee J., Koo S., Park S., Kim D., Cell Reports Physical Science, 2021, 2(8), 100508 |
170 | Dubau L., Castanheira L., Maillard F., Chatenet M., Lottin O., Maranzana G., Dillet J., Lamibrac A., Perrin J. C., Moukheiber E., ElKaddouri A., De Moor G., Bas C., Flandin L., Caqué N., WIREs Energy Environ., 2014, 3(6), 540—560 |
171 | Lemmon J. P., Nature, 2015, 525(7570), 447—449 |
172 | Tian X. Y., Zhao P. C., Sheng W. C., Adv. Mater., 2019, 31(31), e1808066 |
173 | Cui X. Z., Guo L. M., Cui F. M., He Q. J., Shi J. L., J. Phys. Chem. C, 2009, 113(10), 4134—4138 |
174 | Wang D. L., Subban C. V., Wang H. S., Rus E., DiSalvo F. J., Abruña H. D., J. Am. Chem. Soc., 2010, 132(30), 10218—10220 |
175 | Sievers G. W., Jensen A. W., Quinson J., Zana A., Bizzotto F., Oezaslan M., Dworzak A., Kirkensgaard J. J. K., Smitshuysen T. E. L., Kadkhodazadeh S., Juelsholt M., Jensen K. M. Ø., Anklam K., Wan H., Schäfer J., Čépe K., Escudero⁃Escribano M., Rossmeisl J., Quade A., Brüser V., Arenz M., Nat. Mater., 2021, 20(2), 208—213 |
176 | Tian H., Cui X. Z., Shi J. L., Chem. Eng. J., 2021, 421, 129430 |
177 | Benson J. E., Kohn H. W., Boudart M., J. Catal., 1966, 5(2), 307—313 |
178 | Yan B., Bisbey R. P., Alabugin A., Surendranath Y., J. Am. Chem. Soc., 2019, 141(28), 11115—11122 |
179 | Geppert T. N., Bosund M., Putkonen M., Stühmeier B. M., Pasanen A. T., Heikkilä P., Gasteiger H. A., El⁃Sayed H. A., J. Electrochem. Soc., 2020, 167(8), 084517 |
180 | Jung S. M., Yun S. W., Kim J. H., You S. H., Park J., Lee S., Chang S. H., Chae S. C., Joo S. H., Jung Y. S., Lee J., Son J., Snyder J., Stamenkovic V., Markovic N. M., Kim Y. T., Nat. Catal., 2020, 3(8), 639—648 |
181 | Sun Y. F., Ramanathan S., Nat. Catal., 2020, 3(8), 609—610 |
182 | Yang B. B., Tamirat A. G., Bin D., Yao Y., Lu H. B., Xia Y. Y., Adv. Funct. Mater., 2021, 31(52), 2104543 |
[1] | XU Jianing, BAI Wenjing, LOU Yuhan, YU Haipeng, DOU Shuo. Electrocatalytic Oxidative Cleavage of Lignin: Facile and Efficient Biomass Valorization Strategy [J]. Chem. J. Chinese Universities, 2023, 44(5): 304. |
[2] | LI Xuan, QI Shuai, ZHOU Weiliang, LI Xiaojie, JING Lingyan, FENG Chao, JIANG Xingxing, YANG Hengpan, HU Qi, HE Chuanxin. Advances in Nanofiber-based Electrocatalysts for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 316. |
[3] | ZHANG Xiaoran, ZHENG Jianyun, LYU Yanhong, WANG Shuangyin. Recent Advances in Green C-N Coupling for Urea Synthesis [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220717. |
[4] | YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666. |
[5] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[6] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[7] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[8] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[9] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[10] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
[11] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[12] | YANG Lijun, YU Yang, ZHANG Lei. Construction of Dual-functional 2D/3D Hydrid Co2P-CeO x Heterostructure Integrated Electrode for Electrocatalytic Urea Oxidation Assisted Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220082. |
[13] | XIA Tian, WAN Jiawei, YU Ranbo. Progress of the Structure-property Correlation of Heteroatomic Coordination Structured Carbon-based Single-atom Electrocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220162. |
[14] | ZHANG Hongwei, CHEN Wen, ZHAO Meiqi, MA Chao, HAN Yunhu. Research Progress of Single Atom Catalysts in Electrochemistry [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220129. |
[15] | WU Jun, HE Guanchao, FEI Huilong. Self-supported Film Electrodes Decorated with Single Atoms for Energy Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220051. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||