Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (5): 20220770.doi: 10.7503/cjcu20220770
• Review • Previous Articles Next Articles
LI Xuan2, QI Shuai1, ZHOU Weiliang1, LI Xiaojie1, JING Lingyan1, FENG Chao1, JIANG Xingxing1, YANG Hengpan1, HU Qi1(), HE Chuanxin1(
)
Received:
2022-12-21
Online:
2023-05-10
Published:
2023-02-27
Contact:
HU Qi, HE Chuanxin
E-mail:hq2016@szu.edu.cn;hecx@szu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Xuan, QI Shuai, ZHOU Weiliang, LI Xiaojie, JING Lingyan, FENG Chao, JIANG Xingxing, YANG Hengpan, HU Qi, HE Chuanxin. Advances in Nanofiber-based Electrocatalysts for Oxygen Reduction Reaction[J]. Chem. J. Chinese Universities, 2023, 44(5): 20220770.
Type | Catalyst | Characteristics |
---|---|---|
Metal nanoparticles encapsulated carbon nanofiber hybrids | Single metal nanoparticles encapsulatedcarbon nanofibers hybrids | Only one metal species in hybrids, and the metal exist as nanoparticles |
Multi⁃metal nanoparticles encapsulated carbon nanofibers hybrids | The number of metal species is more than two, and the metal species exist as nanoparticles | |
Metal single atoms encapsulated carbon nanofiber hybrids | Single metal atoms encapsulated carbonnanofiber hybrids | Only one metal species in hybrid system, and the coordination of metal atom is adjustable |
Dual⁃metal atoms encapsulated carbon nanofiber hybrids | The number of metal species is more than two, and the configuration of metal species is metal single atoms | |
Metal cluster encapsulated nanofiber hybrids | Metal species size is less than 1 nm | |
Heteroatom⁃doped carbon nanofiber hybrids | In hybrid system, no metal is included. The active sites are nonmetal elements, including N, O, P, F, S and Se. |
Table 1 Classification of nanofiber-based electrocatalysts toward ORR
Type | Catalyst | Characteristics |
---|---|---|
Metal nanoparticles encapsulated carbon nanofiber hybrids | Single metal nanoparticles encapsulatedcarbon nanofibers hybrids | Only one metal species in hybrids, and the metal exist as nanoparticles |
Multi⁃metal nanoparticles encapsulated carbon nanofibers hybrids | The number of metal species is more than two, and the metal species exist as nanoparticles | |
Metal single atoms encapsulated carbon nanofiber hybrids | Single metal atoms encapsulated carbonnanofiber hybrids | Only one metal species in hybrid system, and the coordination of metal atom is adjustable |
Dual⁃metal atoms encapsulated carbon nanofiber hybrids | The number of metal species is more than two, and the configuration of metal species is metal single atoms | |
Metal cluster encapsulated nanofiber hybrids | Metal species size is less than 1 nm | |
Heteroatom⁃doped carbon nanofiber hybrids | In hybrid system, no metal is included. The active sites are nonmetal elements, including N, O, P, F, S and Se. |
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Thorny Ag NFs | 0.1 mol/L KOH | 1.041 | 0.848 | 3.91 | [ |
CNT/Ag1/CNF | 0.1 mol/L KOH | 0.874 | 0.724 | 3.87 | [ |
PAN/Ga⁃75 nanofibers | 0.1 mol/L KOH | 0.84 | 0.71 | 3.1 | [ |
Ni/CNF⁃750 | 0.1 mol/L KOH | 0.93 | 0.72 | 3.7 | [ |
Pt/CNT | 0.1 mol/L KOH | 0.958 | 0.885 | — | [ |
Pd/PNCNF | 0.1 mol/L KOH | 0.92 | — | 3.55 | [ |
Co⁃NGT | 0.1 mol/L KOH | 0.964 | 0.837 | 3.9 | [ |
Co⁃N⁃C/CNF | 0.1 mol/L KOH | — | 0.859 | 3.6 | [ |
CoO x ⁃CoP/N⁃CNTs | 0.1 mol/L KOH | 0.96 | 0.81 | 3.9 | [ |
CoO x @CoN y /NCNF | 0.1 mol/L KOH | — | 0.78 | 3.84 | [ |
Co3O4-x bubbles nanofiber | 0.1 mol/L KOH | — | 0.81 | 3.9 | [ |
Fe⁃Fe3C/Fe3N@NCNFs | 0.1 mol/LKOH | 0.998 | 0.85 | 3.8 | [ |
Fe⁃N⁃CNP⁃CNF | 0.1 mol/L KOH | 0.86 | 0.77 | 3.65 | [ |
Table 2 Overview of previously reported metal catalysts and their performance toward ORR
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Thorny Ag NFs | 0.1 mol/L KOH | 1.041 | 0.848 | 3.91 | [ |
CNT/Ag1/CNF | 0.1 mol/L KOH | 0.874 | 0.724 | 3.87 | [ |
PAN/Ga⁃75 nanofibers | 0.1 mol/L KOH | 0.84 | 0.71 | 3.1 | [ |
Ni/CNF⁃750 | 0.1 mol/L KOH | 0.93 | 0.72 | 3.7 | [ |
Pt/CNT | 0.1 mol/L KOH | 0.958 | 0.885 | — | [ |
Pd/PNCNF | 0.1 mol/L KOH | 0.92 | — | 3.55 | [ |
Co⁃NGT | 0.1 mol/L KOH | 0.964 | 0.837 | 3.9 | [ |
Co⁃N⁃C/CNF | 0.1 mol/L KOH | — | 0.859 | 3.6 | [ |
CoO x ⁃CoP/N⁃CNTs | 0.1 mol/L KOH | 0.96 | 0.81 | 3.9 | [ |
CoO x @CoN y /NCNF | 0.1 mol/L KOH | — | 0.78 | 3.84 | [ |
Co3O4-x bubbles nanofiber | 0.1 mol/L KOH | — | 0.81 | 3.9 | [ |
Fe⁃Fe3C/Fe3N@NCNFs | 0.1 mol/LKOH | 0.998 | 0.85 | 3.8 | [ |
Fe⁃N⁃CNP⁃CNF | 0.1 mol/L KOH | 0.86 | 0.77 | 3.65 | [ |
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Co⁃N/CNFs | 0.1 mol/L HClO4 | 0.82 | 0.78 | 3.4 | [ |
Co@MCM | 0.1 mol/L KOH | 0.95 | 0.86 | 3.7 | [ |
FeSA/B, N⁃CNT | 0.1 mol/L KOH | — | 0.933 | 3.95 | [ |
S, N⁃Fe/N/C⁃CNT | 0.1 mol/L KOH | — | 0.85 | 4.0 | [ |
CNT/PC | 0.1 mol/L KOH | — | 0.88 | 4.0 | [ |
Fe⁃N⁃CNTAs⁃5⁃900 | 0.1 mol/L KOH | 0.97 | 0.88 | ca. 4.0 | [ |
p⁃Fe⁃N⁃CNF | 0.1 mol/L HClO4 | 0.85 | 0.74 | 3.2 | [ |
Co SA@NCF/CNF | 0.1 mol/L KOH | — | 0.88 | ca.4.0 | [ |
Fe⁃N/CNT⁃2 | 0.1 mol/L KOH | 0.96 | 0.938 | 3.98 | [ |
Fe/N⁃CNRs | 0.1 mol/L KOH | 1.10 | 0.90 | ca.4.0 | [ |
p⁃FePc/CNTs | 0.1 mol/L KOH | — | 0.88 | 3.9 | [ |
SAFe⁃SWCNT | 0.1 mol/L KOH | — | 0.93 | ca.4.0 | [ |
f⁃FeCo⁃CNT | 0.1 mol/L KOH | 0.96 | 0.87 | ca.4.0 | [ |
Fe⁃N⁃C⁃900 | 0.1 mol/L KOH | 1.006 | 0.9 | ca.4.0 | [ |
Co3Fe7@Co/Fe⁃SAC | 0.1 mol/L KOH | — | 0.841 | 3.8 | [ |
Fe, Co SAs⁃PNCF | 0.1 mol/L KOH | 1.04 | 0.93 | 4.01 | [ |
Pt1Co100/N⁃GCNT | 0.1 mol/L HClO4 | — | 0.85 | ca.4.0 | [ |
(Fe,Co)/CNT | 0.1 mol/L KOH | 1.15 | 0.954 | ca.4.0 | [ |
Pt3Co@Pt⁃SAC | 0.1 mol/L HClO4 | 0.86 | 0.943 | 3.98 | [ |
Table 3 Overview of previously reported metal single atom-based catalysts and their performance toward ORR
Catalyst | Electrolyte | Eonset | E1/2/V | n | Ref. |
---|---|---|---|---|---|
Co⁃N/CNFs | 0.1 mol/L HClO4 | 0.82 | 0.78 | 3.4 | [ |
Co@MCM | 0.1 mol/L KOH | 0.95 | 0.86 | 3.7 | [ |
FeSA/B, N⁃CNT | 0.1 mol/L KOH | — | 0.933 | 3.95 | [ |
S, N⁃Fe/N/C⁃CNT | 0.1 mol/L KOH | — | 0.85 | 4.0 | [ |
CNT/PC | 0.1 mol/L KOH | — | 0.88 | 4.0 | [ |
Fe⁃N⁃CNTAs⁃5⁃900 | 0.1 mol/L KOH | 0.97 | 0.88 | ca. 4.0 | [ |
p⁃Fe⁃N⁃CNF | 0.1 mol/L HClO4 | 0.85 | 0.74 | 3.2 | [ |
Co SA@NCF/CNF | 0.1 mol/L KOH | — | 0.88 | ca.4.0 | [ |
Fe⁃N/CNT⁃2 | 0.1 mol/L KOH | 0.96 | 0.938 | 3.98 | [ |
Fe/N⁃CNRs | 0.1 mol/L KOH | 1.10 | 0.90 | ca.4.0 | [ |
p⁃FePc/CNTs | 0.1 mol/L KOH | — | 0.88 | 3.9 | [ |
SAFe⁃SWCNT | 0.1 mol/L KOH | — | 0.93 | ca.4.0 | [ |
f⁃FeCo⁃CNT | 0.1 mol/L KOH | 0.96 | 0.87 | ca.4.0 | [ |
Fe⁃N⁃C⁃900 | 0.1 mol/L KOH | 1.006 | 0.9 | ca.4.0 | [ |
Co3Fe7@Co/Fe⁃SAC | 0.1 mol/L KOH | — | 0.841 | 3.8 | [ |
Fe, Co SAs⁃PNCF | 0.1 mol/L KOH | 1.04 | 0.93 | 4.01 | [ |
Pt1Co100/N⁃GCNT | 0.1 mol/L HClO4 | — | 0.85 | ca.4.0 | [ |
(Fe,Co)/CNT | 0.1 mol/L KOH | 1.15 | 0.954 | ca.4.0 | [ |
Pt3Co@Pt⁃SAC | 0.1 mol/L HClO4 | 0.86 | 0.943 | 3.98 | [ |
101 | Yoon K. R., Hwang C. K., Kim S. H., Jung J. W., Chae J. E., Kim J., Lee K. A., Lim A., Cho S. H., Singh J. P., Kim J. M., Shin K., Moon B. M., Park H. S., Kim H. J., Chae K. H., Ham H. C., Kim I. D., Kim J. Y., ACS Nano, 2021, 15, 11218—11230 |
102 | Liu J., Liu S., Yan F., Wen Z., Chen W., Liu X., Liu Q., Shang J., Yu R., Su D., Shui J., J. Am. Chem. Soc., 2022, 144(41), 19106—19114 |
103 | Deng C., Tan J., Toe C.Y., Li X., Li G., Jiang X., Wei S., Yang H., Hu Q., He C., J. Mater. Chem. A, 2022, 10(33), 17217—17224 |
104 | Wang S., Wang J., Wang X., Li L., Qin J., Cao M., J. Energy Chem., 2021, 53, 422—432 |
105 | Chen J., Li L., Yang L., Chen C., Wang S., Huang Y., Cao D., Chin. J. Chem. Eng., 2022, 43, 161—168 |
106 | Ha Y., Kang S., Ham K., Lee J., Kim H., J. Phys. Chem. Lett., 2019, 10(11), 3109—3114 |
107 | Wang Y., Tong M., Wang L., Liu X., Tian C., Fu H., Sci. China Mater., 2021, 64(11), 2719—2728 |
108 | Lin S. Y., Xia L. X., Zhang L., Feng J. J., Zhao Y., Wang A. J., Chem. Eng. J., 2021, 424, 130559 |
109 | Wang X., Li Y., Jin T., Meng J., Jiao L., Zhu M., Chen J., Nano Lett., 2017, 17(12), 7989—7994 |
110 | Bian Y., Wang H., Gao Z., Hu J., Liu D., Dai L., Nanoscale, 2020, 12(27), 14615—14625 |
111 | Sarabaegi M., Roushani M., Hosseini H., Abbasi S., Surf. Interfaces, 2021, 25, 101207 |
112 | Shi X., He B., Zhao L., Gong Y., Wang R., Wang H., J. Power Sources, 2021, 482, 228955 |
113 | Zhang X., Wang Z., Wang K., Xie K., Wu L., Diam. Relat. Mater., 2021, 119, 108566 |
114 | Hu D., Wang R., Du P., Li G., Wang Y., Fan D., Pan X., Ceram. Int., 2022, 48(5), 6549—6555 |
115 | Ren Y., Wang H., Zhang T., Ma L., Ye P., Zhong Y., Hu Y., Chin. Chem. Lett., 2021, 32(7), 2243—2248 |
116 | Wang Z., Ang J., Zhang B., Zhang Y., Ma X.Y.D., Yan T., Liu J., Che B., Huang Y., Lu X., Appl. Catal. B: Environ., 2019, 254, 26—36 |
117 | Kazakova M. A., Morales D. M., Andronescu C., Elumeeva K., Selyutin A. G., Ishchenko A.V., Golubtsov G. V., Dieckhöfer S., Schuhmann W., Masa J., Catal. Today, 2020, 357, 259—268 |
118 | Tang X., Cao R., Li L., Huang B., Zhai W., Yuan K., Chen Y., J. Mater. Chem. A, 2020, 8(48), 25919—25930 |
119 | Chae S. H., Muthurasu A., Kim T., Kim J. S., Khil M. S., Lee M., Kim H., Lee J. Y., Kim H. Y., Appl. Catal. B: Environ., 2021, 293, 120209 |
120 | Chen D., Li G., Chen X., Zhang Q., Sui J., Li C., Zhang Y., Hu J., Yu J., Yu L., Dong L., J. Colloid Interf. Sci., 2021, 593, 204—213 |
121 | Ye X., Han Z., Yan Q., Feng J. J., Mei L. P., Zhang L., Wang A. J., J. Power Sources, 2021, 506, 230225 |
122 | Wang Z., Cheng L., Zhang R., Lv W., Wang W., J. Alloys Compd., 2021, 857, 158249 |
123 | Sui X., Zhang L., Li J., Doyle‐Davis K., Li R., Wang Z., Sun X., Adv. Energy Mater., 2021, 12, 2102556 |
124 | Jin Z., Li P., Fang Z., Yu G., Acc. Chem. Res., 2022, 55(5), 759—769 |
125 | Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120(21), 11900—11955 |
126 | Zhang H., Chung H. T., Cullen D. A., Wagner S., Kramm U. I., More K. L., Zelenay P., Wu G., Energ. Environ. Sci., 2019, 12(8), 2548—2558 |
127 | Qu X., Han Y., Chen Y., Lin J., Li G., Yang J., Jiang Y., Sun S., Appl. Catal. B: Environ., 2021, 295, 120311 |
128 | Wang Y., Tao L., Chen R., Li H., Su H., Zhang N., Liu Q., Wang S., Chem. Res. Chinese Universities, 2020, 36(3), 453—458 |
129 | Li Y., Zhu X., Li L., Li F., Zhang X., Li Y., Zheng Z., Small, 2021, 18(7), 2105487 |
130 | Wang Q., Feng Q., Lei Y., Tang S., Xu L., Xiong Y., Fang G., Wang Y., Yang P., Liu J., Liu W., Xiong X., Nat. Commun., 2022, 13(1), 3689 |
131 | Shen T., Huang X., Xi S., Li W., Sun S., Hou Y., J. Energy Chem., 2022, 68, 184—194 |
132 | Zhao C. X., Li B. Q., Liu J. N., Zhang Q., Angew. Chem. Int. Ed., 2021, 60(9), 4448—4463 |
133 | Cheng Q., Yang L., Zou L., Zou Z., Chen C., Hu Z., Yang H., ACS Catalysis, 2017, 7(10), 6864—6871 |
134 | Yang L., Zhang X., Yu L., Hou J., Zhou Z., Lv R., Adv. Mater., 2022, 34(5), 2105410 |
135 | Zhang W., Chu J., Li S., Li Y., Li L., J. Energy Chem., 2020, 51, 323—332 |
136 | Ji D., Fan L., Li L., Peng S., Yu D., Song J., Ramakrishna S., Guo S., Adv. Mater., 2019, 31(16), 1808267 |
137 | Zhang H., Zhou W., Chen T., Guan B. Y., Li Z., Lou X. W., Energ. Environ. Sci., 2018, 11(8), 1980—1984 |
138 | Zhao C. X., Liu J. N., Wang J., Wang C., Guo X., Li X. Y., Chen X., Song L., Li B. Q., Zhang Q., Sci. Adv., 2022, 8(11), eabn5091 |
139 | Yang L., Yu L., Huang Z. H., Kang F., Lv R., J. Energy Chem., 2022, 75, 430—440 |
140 | Jiang K., Back S., Akey A. J., Xia C., Hu Y., Liang W., Schaak D., Stavitski E., Norskov J. K., Siahrostami S., Wang H., Nat. Commun., 2019, 10(1), 3997 |
141 | Pedersen A., Barrio J., Li A., Jervis R., Brett D. J. L., Titirici M. M., Stephens I. E. L., Adv. Energy Mater., 2021, 12, 2102715 |
142 | Li R., Wang D., Adv. Energy Mater., 2022, 12, 2103564 |
143 | Jiang M., Wang F., Yang F., He H., Yang J., Zhang W., Luo J., Zhang J., Fu C., Nano Energy, 2022, 93, 106793 |
144 | Jiang Y., Deng Y. P., Liang R., Chen N., King G., Yu A., Chen Z., J. Am. Chem. Soc., 2022, 144(11), 4783—4791 |
145 | Zhang Q., Kumar P., Zhu X., Daiyan R., Bedford N. M., Wu K. H., Han Z., Zhang T., Amal R., Lu X., Adv. Energy Mater., 2021, 11(17), 2100303 |
146 | Zhao X., Wang F., Kong X. P., Fang R., Li Y., J. Am. Chem. Soc., 2021, 143(39), 16068—16077 |
147 | Wan W., Zhao Y., Wei S., Triana C.A., Li J., Arcifa A., Allen C. S., Cao R., Patzke G. R., Nat. Commun., 2021, 12(1), 5589 |
148 | Chen J., Li H., Fan C., Meng Q., Tang Y., Qiu X., Fu G., Ma T., Adv. Mater., 2020, 32(30), e2003134 |
149 | Wang J., Liu W., Luo G., Li Z., Zhao C., Zhang H., Zhu M., Xu Q., Wang X., Zhao C., Qu Y., Yang Z., Yao T., Li Y., Lin Y., Wu Y., Li Y., Energ. Environ. Sci., 2018, 11(12), 3375—3379 |
150 | Sun H., Wang M., Du X., Jiao Y., Liu S., Qian T., Yan Y., Liu C., Liao M., Zhang Q., Meng L., Gu L., Xiong J., Yan C., J. Mater. Chem. A, 2019, 7(36), 20952—20957 |
151 | Chen P., Zhou T., Xing L., Xu K., Tong Y., Xie H., Zhang L., Yan W., Chu W., Wu C., Xie Y., Angew. Chem. Int. Ed., 2017, 56(2), 610—614 |
152 | Sa Y. J., Seo D. J., Woo J., Lim J. T., Cheon J. Y., Yang S. Y., Lee J. M., Kang D., Shin T. J., Shin H. S., Jeong H. Y., Kim C. S., Kim M. G., Kim T. Y., Joo S. H., J. Am. Chem. Soc., 2016, 138(45), 15046—15056 |
153 | Zhu C., Fu S., Song J., Shi Q., Su D., Engelhard M. H., Li X., Xiao D., Li D., Estevez L., Du D., Lin Y., Small, 2017, 13(15), 1603407 |
154 | Hu B. C., Wu Z. Y., Chu S. Q., Zhu H. W., Liang H. W., Zhang J., Yu S. H., Energ. Environ. Sci., 2018, 11(8), 2208—2215 |
155 | Xia D., Yang X., Xie L., Wei Y., Jiang W., Dou M., Li X., Li J., Gan L., Kang F., Adv. Funct. Mater., 2019, 29(49), 1906174 |
156 | Gong X., Zhu J., Li J., Gao R., Zhou Q., Zhang Z., Dou H., Zhao L., Sui X., Cai J., Zhang Y., Liu B., Hu Y., Yu A., Sun S. H., Wang Z., Chen Z., Adv. Funct. Mater., 2020, 31(8), 2008085 |
157 | Xu H., Xi S., Li J., Liu S., Lyu P., Yu W., Sun T., Qi D. C., He Q., Xiao H., Lin M., Wu J., Zhang J., Lu J., J. Mater. Chem. A, 2020, 8(34), 17683—17690 |
158 | Meng Y., Li J. C., Zhao S. Y., Shi C., Li X. Q., Zhang L., Hou P. X., Liu C., Cheng H. M., Appl. Catal. B: Environ., 2021, 294, 120239 |
159 | Wang Y., Kumar A., Ma M., Jia Y., Wang Y., Zhang Y., Zhang G., Sun X., Yan Z., Nano Res., 2020, 13(4), 1090—1099 |
160 | Ma L., Li J., Zhang Z., Yang H., Mu X., Gu X., Jin H., Chen D., Yan S., Liu S., Mu S., Nano Res., 2021, 15(3), 1966—1972 |
161 | Liu B., Wang S., Feng R., Ni Y., Song F., Liu Q., ACS Appl. Mater. Interfaces, 2022, 14(34), 38739—38749 |
162 | Cheng X., Wang Y., Lu Y., Zheng L., Sun S., Li H., Chen G., Zhang J., Appl. Catal. B: Environ., 2022, 306, 121112 |
163 | Liu B., Feng R., Busch M., Wang S., Wu H., Liu P., Gu J., Bahadoran A., Matsumura D., Tsuji T., Zhang D., Song F., Liu Q., ACS Nano, 2022, 16(9), 14121—14133 |
164 | Zhuang Z., Chen W., J. Colloid Interf. Sci., 2019, 538, 699—708 |
165 | Zheng X., Li P., Dou S., Sun W., Pan H., Wang D., Li Y., Energ. Environ. Sci., 2021, 14(5), 2809—2858 |
166 | Qi S., Wang D., Li W., Zhang R., Liu F., Zhang J., Liu Z., Guo Y., Wang F., Wen G., Nanoscale, 2019, 11(37), 17425—17435 |
167 | Zhou M., Wang H. L., Guo S., Chem. Soc. Rev., 2016, 45(5), 1273—1307 |
168 | Sheng Z. H., Shao L., Chen J. J., Bao W. J., Wang F. B., Xia X. H., ACS Nano, 2011, 5(6), 4350—4358 |
169 | Liang H. W., Wu Z. Y., Chen L. F., Li C., Yu S. H., Nano Energy, 2015, 11, 366—376 |
170 | Kaur P., Kim D. E., Verma G., Park J. S., Sekhon S. S., J. Ind. Eng. Chem., 2021, 96, 307—314 |
171 | Massaglia G., Margaria V., Sacco A., Castellino M., Chiodoni A., Pirri F. C., Quaglio M., Int. J. Hydrogen Energy, 2019, 44(9), 4442—4449 |
172 | Jindal A., Gautam D. K., Basu S., J. Electroanal. Chem., 2016, 775, 198—204 |
173 | Liu D., Zhang X., Sun Z., You T., Nanoscale, 2013, 5(20), 9528—9531 |
174 | Miao Y. E., Yan J., Ouyang Y., Lu H., Lai F., Wu Y., Liu T., Appl. Surf. Sci., 2018, 443, 266—273 |
175 | Marbaniang P., Ingavale S., Karuppanan P., Swami A., Kakade B., Int. J. Hydrogen Energy, 2021, 46(17), 10268—10280 |
176 | Gong K., Du F., Xia Z.,Durstock M., Dai L., Science, 2008, 323(5915), 760—764 |
177 | Dong K., Liang J., Wang Y., Xu Z., Liu Q., Luo Y., Li T., Li L., Shi X., Asiri A. M., Li Q., Ma D., Sun X., Angew. Chem. Int. Ed., 2021, 60(19), 10583—10587 |
178 | Yang H., Wu Y., Lin Q., Fan L., Chai X., Zhang Q., Liu J., He C., Lin Z., Angew. Chem. Int. Ed., 2018, 57(47), 15476—15480 |
179 | Zhong R. S., Qin Y. H., Niu D. F., Tian J. W., Zhang X. S., Zhou X. G., Sun S. G., Yuan W. K., J. Power Sources, 2013, 225, 192—199 |
1 | Cheng F., Chen J., Chem. Soc. Rev., 2012, 41(6), 2172—2192 |
2 | Tian X., Lu X. F., Xia B. Y., Lou X. W., Joule, 2020, 4(1), 45—68 |
3 | Snitkoff⁃Sol R. Z., Friedman A., Honig H. C., Yurko Y., Kozhushner A., Zachman M. J., Zelenay P., Bond A. M., Elbaz L., Nat. Catal., 2022, 5(2), 163—170 |
4 | Tang H., Geng K., Wu L., Liu J., Chen Z., You W., Yan F., Guiver M. D., Li N., Nat. Energy, 2022, 7, 153—162 |
5 | Tang M., Zhang S., Chen S., Chem. Soc. Rev., 2022, 51(4), 1529—1546 |
6 | Yang Y., Peltier C. R., Zeng R., Schimmenti R., Li Q., Huang X., Yan Z., Potsi G., Selhorst R., Lu X., Xu W., Tader M., Soudackov A. V., Zhang H., Krumov M., Murray E., Xu P., Hitt J., Xu L., Ko H. Y., Ernst B. G., Bundschu C., Luo A., Markovich D., Hu M., He C., Wang H., Fang J., Robert A., DiStasio J., Kourkoutis L. F., Singer A., Noonan K. J. T., Xiao L., Zhuang L., Pivovar B. S., Zelenay P., Herrero E., Feliu J. M., Suntivich J., Giannelis E. P., Hammes⁃Schiffer S., Arias T., Mavrikakis M., Mallouk T. E., Brock J. D., Muller D. A., DiSalvo F. J., Coates G. W., Abruña H. D., Chem. Rev., 2022, 122(6), 6117—6321 |
7 | Zhang T., Wu N., Zhao Y., Zhang X., Wu J., Weng J., Li S., Huo F., Huang W., Adv. Sci., 2022, 9(6), 2103954 |
8 | Gewirth A. A., Varnell J. A., DiAscro A. M., Chem. Rev., 2018, 118(5), 2313—2339 |
9 | Wu J., Yang H., Acc. Chem. Res., 2013, 46(8), 1848—1857 |
10 | Tang Z., Nie Z., Yuan M., Lai Q., Liang Y., ChemElectroChem, 2021, 8(17), 3311—3317 |
11 | Qian Z., Wang Z., Zhao N., Xu J., Macromol. Rapid Commun., 2018, 39(14), 1700724 |
12 | Liu C., Wang J., Li J., Liu J., Wang C., Sun X., Shen J., Han W., Wang L., J. Mater. Chem. A, 2017, 5(3), 1211—1220 |
13 | Nie G., Zhao X., Luan Y., Jiang J., Kou Z., Wang J., Nanoscale, 2020, 12(25), 13225—13248 |
14 | Nie G., Zhang Z., Wang T., Wang C., Kou Z., ACS Appl. Mater. Interfaces, 2021, 13(32), 37961—37978 |
15 | Nonoyama N., Okazaki S., Weber A. Z., Ikogi Y., Yoshida T., J. Electrochem. Soc., 2011, 158(4), B416 |
16 | Yang J., Liu W., Xu M., Liu X., Qi H., Zhang L., Yang X., Niu S., Zhou D., Liu Y., Su Y., Li J. F., Tian Z. Q., Zhou W., Wang A., Zhang T., J. Am. Chem. Soc., 2021, 143(36), 14530—14539 |
17 | Zhang X., Guo S., Qin Y., Li C., Chem. Res. Chinese Universities, 2021, 37(3), 379—393 |
18 | Wan L., Xu Z., Xu Q., Wang P., Wang B., Energ. Environ. Sci., 2022, 15, 1882—1892 |
19 | Lu L., Cao X., Shen Z., Li L., Huo J., Chen W., Liu C., Liu H., Sustain. Mater. Techno., 2020, 26, e00221 |
20 | Li W., Liu B., Liu D., Guo P., Liu J., Wang R., Guo Y., Tu X., Pan H., Sun D., Fang F., Wu R., Adv. Mater., 2022, 34(17), 2109605 |
21 | Ma J., Habrioux A., Luo Y., Ramos⁃Sanchez G., Calvillo L., Granozzi G., Balbuena P. B., Alonso⁃Vante N., J. Mater. Chem. A, 2015, 3(22), 11891—11904 |
22 | Arai T., Takashi O., Amemiya K., Takahashi T., SAE Int. J. Alt. Power, 2017, 6(1), 145—150 |
23 | Ge X., Sumboja A., Wuu D., An T., Li B., Goh F. W. T., Hor T. S. A., Zong Y., Liu Z., ACS Catalysis, 2015, 5(8), 4643—4667 |
24 | Douka A. I., Yang H., Huang L., Zaman S., Yue T., Guo W., You B., Xia B. Y., EcoMat, 2020, 3(1), e12067 |
25 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science, 2017, 355(6321), 146 |
26 | Asset T., Chattot R., Fontana M., Mercier⁃Guyon B., Job N., Dubau L., Maillard F., ChemPhysChem, 2018, 19(13), 1552—1567 |
27 | Qiao Z., Wang C., Zeng Y., Spendelow J. S., Wu G., Small, 2021, 17, 2006805 |
28 | Tian X., Zhao X., Su Y. Q., Wang L., Wang H., Dang D., Chi B., Liu H., Hensen E. J. M., Lou X. W. D., Xia B. Y., Science, 2019, 366(6467), 850—856 |
29 | Gao L., Sun T., Tan X., Liu M., Xue F., Wang B., Zhang J., Lu Y. F., Ma C., Tian H., Yang S., Smith S. C., Huang H., Appl. Catal. B: Environ., 2022, 303, 120918 |
30 | Han A., Wang X., Tang K., Zhang Z., Ye C., Kong K., Hu H., Zheng L., Jiang P., Zhao C., Zhang Q., Wang D., Li Y., Angew. Chem. Int. Ed., 2021, 60(35), 19262—19271 |
31 | Stephens I. E. L., Bondarenko A. S., Grønbjerg U., Rossmeisl J., Chorkendorff I., Energ. Environ. Sci., 2012, 5(5), 6744 |
32 | Gao L., Li X., Yao Z., Bai H., Lu Y., Ma C., Lu S., Peng Z., Yang J., Pan A., Huang H., J. Am. Chem. Soc., 2019, 141(45), 18083—18090 |
33 | Zhou L., Deng X., Lu Q., Yang G., Zhou W., Shao Z., Energ. Fuel., 2020, 34(9), 11527—11535 |
34 | Huang L., Su Y. Q., Qi R., Dang D., Qin Y., Xi S., Zaman S., You B., Ding S., Xia B. Y., Angew. Chem. Int. Ed., 2021, 60, 25530 |
35 | Zhao Z., Liu Z., Zhang A., Yan X., Xue W., Peng B., Xin H. L., Pan X., Duan X., Huang Y., Nat. Natotechnol., 2022, 17(9), 968—975 |
36 | Yang C. L., Wang L. N., Yin P., Liu J., Chen M. X., Yan Q. Q., Wang Z. S., Xu S. L., Chu S. Q., Cui C., Ju H., Zhu J., Lin Y., Shui J., Liang H. W., Science, 2021, 374(6566), 459—464 |
37 | Wu D., Shen X., Pan Y., Yao L., Peng Z., ChemNanoMat, 2019, 6(1), 32—41 |
38 | Shang H., Zhou X., Dong J., Li A., Zhao X., Liu Q., Lin Y., Pei J., Li Z., Jiang Z., Zhou D., Zheng L., Wang Y., Zhou J., Yang Z., Cao R., Sarangi R., Sun T., Yang X., Zheng X., Yan W., Zhuang Z., Li J., Chen W., Wang D., Zhang J., Li Y., Nat. Commun., 2020, 11(1), 3049 |
39 | Wang R., Liu B., You S., Li Y., Zhang Y., Wang D., Tang B., Sun Y., Zou J., Chem. Eng. J., 2022, 430, 132720 |
40 | Wang X. R., Liu J. Y., Liu Z. W., Wang W. C., Luo J., Han X. P., Du X. W., Qiao S. Z., Yang J., Adv. Mater., 2018, 30(23), 1800005 |
41 | Zhu W., Pei Y., Douglin J. C., Zhang J., Zhao H., Xue J., Wang Q., Li R., Qin Y., Yin Y., Dekel D. R., Guiver M. D., Appl. Catal. B: Environ., 2021, 299, 120656 |
42 | Xie X., He C., Li B., He Y., Cullen D. A., Wegener E. C., Kropf A. J., Martinez U., Cheng Y., Engelhard M. H., Bowden M. E., Song M., Lemmon T., Li X. S., Nie Z., Liu J., Myers D. J., Zelenay P., Wang G., Wu G., Ramani V., Shao Y., Nat. Catal., 2020, 3(12), 1044—1054 |
43 | Zhou Z., Kong Y., Tan H., Huang Q., Wang C., Pei Z., Wang H., Liu Y., Wang Y., Li S., Liao X., Yan W., Zhao S., Adv. Mater., 2022, 34, 2106541 |
44 | Wang J., Li H., Liu S., Hu Y., Zhang J., Xia M., Hou Y., Tse J., Zhang J., Zhao Y., Angew. Chem. Int. Ed., 2021, 60(1), 181—185 |
180 | Panomsuwan G., Saito N., Ishizaki T., ACS Appl. Mater. Interfaces, 2016, 8(11), 6962—6971 |
181 | Park J.E., Kim M. J., Lim M. S., Kang S. Y., Kim J. K., Oh S. H., Her M., Cho Y. H., Sung Y. E., Appl. Catal. B: Environ., 2018, 237, 140—148 |
182 | Patil B., Satilmis B., Uyar T., J. Power Sources, 2020, 451, 227799 |
183 | Lu M., Chen X., Xu Y., Liu R., Xie X., Mater. Chem. Front., 2022, 6(10), 1301—1309 |
184 | Xu M., Wu L., Zhu M., Wang Z., Huang Z. H., Wang M. X., Carbon, 2022, 193, 242—257 |
185 | Gong T., Qi R., Liu X., Li H., Zhang Y., Nano⁃Micro Lett., 2019, 11(1), 9 |
186 | He Z., Wei P., Chen N., Han J., Lu X., Chem. Eur. J., 2021, 27(4), 1423—1429 |
187 | Li G., Pei L., Wu Y., Zhu B., Hu Q., Yang H., Zhang Q., Liu J., He C., J. Mater. Chem. A, 2019, 7(18), 11223—11233 |
188 | Wang L., Wang Y., Wu M., Wei Z., Cui C., Mao M., Zhang J., Han X., Liu Q., Ma J., Small, 2018, 14(20), 1800737 |
45 | Hu H., Wang J., Cui B., Zheng X., Lin J., Deng Y., Han X., Angew. Chem. Int. Ed., 2021, 61, e202114441 |
46 | Jiang L., van Dijk B., Wu L., Maheu C., Hofmann J. P., Tudor V., Koper M. T. M., Hetterscheid D. G. H., Schneider G. F., ACS Catal., 2021, 12(1), 173—182 |
47 | Liu Z., Qin A., Zhang K., Lian P., Yin X., Tan H., Nano Energy, 2021, 90, 106540 |
48 | Zeng Y., Wu G., Chinese J. Catal., 2021, 42(12), 2149—2163 |
49 | Durst J., Chatenet M., Maillard F., Phys. Chem. Chem. Phys., 2012, 14(37), 13000—13009 |
50 | Shinozaki K., Zack J. W., Richards R. M., Pivovar B. S., Kocha S. S., J. Electrochem. Soc., 2015, 162(10), F1144—F1158 |
51 | Liu M., Wang L., Zhao K., Shi S., Shao Q., Zhang L., Sun X., Zhao Y., Zhang J., Energ. Environ. Sci., 2019, 12(10), 2890—2923 |
52 | Wang H., Wang X., Li M., Zheng L., Guan D., Huang X., Xu J., Yu J., Adv. Mater., 2020, 32(44), 2002559 |
53 | Nørskov J. K., J. Rossmeisl A. L., Lindqvist L., J. Phys. Chem. B, 2004, 108(46), 17886—17892 |
54 | Yang H., Wu Y., Li G., Lin Q., Hu Q., Zhang Q., Liu J., He C., J. Am. Chem. Soc., 2019, 141(32), 12717—12723 |
55 | Yang H., Lin Q., Zhang C., Yu X., Cheng Z., Li G., Hu Q., Ren X., Zhang Q., Liu J., He C., Nat. Commun., 2020, 11(1), 593 |
56 | Hu Q., Li G., Li G., Liu X., Zhu B., Chai X., Zhang Q., Liu J., He C., Adv. Energy Mater., 2019, 9(14), 1803867 |
57 | Gan L., Du H., Li B., Kang F., Carbon, 2008, 46(15), 2140—2143 |
58 | Peera S. G., Tintula K. K., Sahu A. K., Shanmugam S., Sridhar P., Pitchumani S., Electrochim. Acta, 2013, 108, 95—103 |
59 | Wu R., Xue Y., Qian X., Liu H., Zhou K., Chan S. H., Tey J. N., Wei J., Zhu B., Huang Y., Int. J. Hydrogen Energy, 2013, 38(36), 16677—16684 |
60 | Li M., Wu X., Zeng J., Hou Z., Liao S., Electrochim. Acta, 2015, 182, 351—360 |
61 | Fu K., Wang Y., Mao L., Jin J., Yang S., Li G., Electrochim. Acta, 2016, 215, 427—434 |
62 | Melke J., Peter B., Habereder A., Ziegler J., Fasel C., Nefedov A., Sezen H., Woll C., Ehrenberg H., Roth C., ACS Appl. Mater. Interfaces, 2016, 8(1), 82—90 |
63 | Sebastián D., Ruíz A. G., Suelves I., Moliner R., Lázaro M. J., Baglio V., Stassi A., Aricò A. S., Appl. Catal. B: Environ., 2012, 115/116, 269—275 |
64 | Shao M., Peles A., Shoemaker K., Nano Lett., 2011, 11(9), 3714—3719 |
65 | Jiang Y., Zhang J., Qin Y. H., Niu D. F., Zhang X. S., Niu L., Zhou X. G., Lu T. H., Yuan W. K., J. Power Sources, 2011, 196(22), 9356—9360 |
66 | Karuppanan K. K., Raghu A. V., Panthalingal M. K., Ramanathan S., Kumaresan T., Pullithadathil B., J. Mater. Chem. A, 2018, 6(26), 12768—12781 |
67 | Kim G. Y., Yoon K. R., Shin K., Jung J. W., Henkelman G., Ryu W. H., Small, 2021, 17(47), e2103755 |
68 | Zhang K., Feng C., He B., Dong H., Dai W., Lu H., Zhang X., J. Electroanal. Chem., 2016, 781, 198—203 |
69 | Ji Y., Cho Y. i., Jeon Y., Lee C., Park D. H., Shul Y. G., Appl. Catal. B: Environ., 2017, 204, 421—429 |
70 | Li D., Lv C., Liu L., Xia Y., She X., Guo S., Yang D., ACS Centeral Sci., 2015, 1(5), 261—269 |
71 | Zhao W., Yuan P., She X., Xia Y., Komarneni S., Xi K., Che Y., Yao X., Yang D., J. Mater. Chem. A, 2015, 3(27), 14188—14194 |
72 | Wei J., Chen H., He J., Huang Z., Qin H., Xiao X., Ni H., Chi H., He J., Carbon, 2023, 201, 856—863 |
73 | Zhang B., Zhao Y., Li L., Li Y., Zhang J., Shao G., Zhang P., Nano Res., 2022, 16, 545—554 |
74 | Pan L., Chen G., Chen G., Chen D., Diam. Relat. Mater., 2022, 127, 109178 |
75 | Luo H., Jiang W. J., Niu S., Zhang X., Zhang Y., Yuan L. P., He C., Hu J. S., Small, 2020, 16(20), 2001171 |
76 | Li B., Ge X., Goh F. W., Hor T. S., Geng D., Du G., Liu Z., Zhang J., Liu X., Zong Y., Nanoscale, 2015, 7(5), 1830—1838 |
77 | Liu T., Guo Y. F., Yan Y. M., Wang F., Deng C., Rooney D., Sun K. N., Carbon, 2016, 106, 84—92 |
78 | Xue H., Wang T., Gong H., Guo H., Fan X., Song L., Xia W., Feng Y., He J., Catalysts, 2017, 7(6), 189 |
79 | Song L., Tang J., Wang T., Wu C., Ide Y., He J., Yamauchi Y., Chem. Eur. J., 2019, 25(27), 6807—6813 |
80 | Wang H., Zhou Y., Zhang S., Deng C., Chem. Eng. J., 2021, 407, 127043 |
81 | Selvakumar K., Ulaganathan M., Kumar S. M. S., Thangamuthu R., Periasamy P., Ragupathy P., ChemistrySelect, 2019, 4(17), 5160—5167 |
82 | Wang F., Liu T., Guo Y., Li W., Qi J., Rooney D., Sun K., RSC Adv., 2017, 7(55), 34763—34769 |
83 | Gao J., Wang J., Zhou L., Cai X., Zhan D., Hou M., Lai L., ACS Appl. Mater. Interfaces, 2019, 11(10), 10364—10372 |
84 | Feng L., Ding R., Chen Y., Wang J., Xu L., J. Power Sources, 2020, 452, 227837 |
85 | Shi Q., Zheng Y., Li W., Tang B., Qin L., Yang W., Liu Q., Catal. Sci. Technol., 2020, 10(15), 5060—5068 |
86 | Chen Y., Qiao S., Tang Y., Du Y., Zhang D., Wang W., Zhang H., Sun X., Liu C., ACS Nano, 2022, 16(9), 15273—15285 |
87 | Panomsuwan G., Saito N., Ishizaki T., RSC Adv., 2016, 6(115), 114553—114559 |
88 | Ji D., Peng S., Safanama D., Yu H., Li L., Yang G., Qin X., Srinivasan M., Adams S., Ramakrishna S., Chem. Mater., 2017, 29(4), 1665—1675 |
89 | Li Q., Zhao J., Wu M., Li C., Han L., Liu R., ChemistrySelect, 2019, 4(2), 722—728 |
90 | Ding W., Zhu H., Lu L., Zhang J., Yu H., Zhao H., J. Alloys Compd., 2020, 848, 156605 |
91 | Li N., Liu L., Wang K., Niu J., Zhang Z., Dou M., Wang F., Chem. Eur. J., 2021, 27(42), 10987—10997 |
92 | Peng H., Zhang M., Xie X., Zhang M., Ma G., Liu C., Catal. Today, 2022, 400/401, 115—123 |
93 | Wu Z. Y., Xu X. X., Hu B. C., Liang H. W., Lin Y., Chen L. F., Yu S. H., Angew. Chem. Int. Ed., 2015, 54(28), 8179—8183 |
94 | Zhang L., Guo Q., Pitcheri R., Fu Y., Li J., Qiu Y., J. Power Sources, 2019, 413, 233—240 |
95 | Li S., Zhao W., Zhang N., Luo Y., Tang Y., Du G., Wang C., Zhang X., Li L., Energ. Fuel., 2021, 35(10), 9017—9028 |
96 | Kakoria A., Devi B., Anand A., Halder A., Koner R. R., Sinha⁃Ray S., ACS Appl. Nano Mater., 2018, 2(1), 64—74 |
97 | Liu G., Xia X., Zhao C., Zhang X., Zhang W., J. Colloid Interf. Sci., 2021, 588, 627—636 |
98 | Bogdanovskaya V., Vernigor I., Radina M., Andreev V., Korchagin O., Catalysts, 2021, 11(3), 335 |
99 | Wang J., Liu L., Chou S., Liu H., Wang J., J. Mater. Chem. A, 2017, 5(4), 1462—1471 |
100 | Nasim F., Ali H., Waseem A., Nadeem M. A., Nadeem M. A., Int. J. Hydrogen Energy, 2022, 47(94), 39898—39907 |
[1] | XU Jianing, BAI Wenjing, LOU Yuhan, YU Haipeng, DOU Shuo. Electrocatalytic Oxidative Cleavage of Lignin: Facile and Efficient Biomass Valorization Strategy [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220749. |
[2] | ZHANG Xiaoran, ZHENG Jianyun, LYU Yanhong, WANG Shuangyin. Recent Advances in Green C-N Coupling for Urea Synthesis [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220717. |
[3] | BAO Chunzhu, XIANG Zhonghua. Pyrolysis-free Strategy of Covalent Organic Polymers-based Oxygen Reduction Electrocatalytic Materials [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220715. |
[4] | WANG Jun, DU Shiqian, TAO Li. Recent Progress of Catalysts in the High Temperature Polymer Electrolyte Membrane Fuel Cells [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220722. |
[5] | ZHANG Xiaoyu, QU Gan, XUE Dongping, YAN Wenfu, ZHANG Jianan. Recent Process of Carbon-based Catalysts for the Production of H2O2 by Electrocatalytic Oxygen Reduction: Strategies, Calculation and Practical Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220775. |
[6] | LI Ruisong, MIAO Zhengpei, LI Jing, TIAN Xinlong. Research Progress on Hollow Precious Metal-based Nanostructures for Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220730. |
[7] | CHI Liping, NIU Zhuangzhuang, LIAO Jie, TANG Kaibin, GAO Minrui. Recent Progress in Intercalation Chemistry of Transition Metal Oxides for Electrocatalytic Applications [J]. Chem. J. Chinese Universities, 2023, 44(5): 20220740. |
[8] | YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666. |
[9] | LI Ziruo, ZHANG Hongjuan, ZHU Guoxun, XIA Wei, TANG Jing. Iron Phthalocyanine Coated Nitrogen-doped Hollow Carbon Spheres for Efficient Catalysis of Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220677. |
[10] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[11] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[12] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[13] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[14] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[15] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||