Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (1): 20220677.doi: 10.7503/cjcu20220677
• Article • Previous Articles Next Articles
LI Ziruo1, ZHANG Hongjuan1, ZHU Guoxun1, XIA Wei1, TANG Jing1,2()
Received:
2022-10-18
Online:
2023-01-10
Published:
2022-12-02
Contact:
TANG Jing
E-mail:jingtang@chem.ecnu.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Ziruo, ZHANG Hongjuan, ZHU Guoxun, XIA Wei, TANG Jing. Iron Phthalocyanine Coated Nitrogen-doped Hollow Carbon Spheres for Efficient Catalysis of Oxygen Reduction Reaction[J]. Chem. J. Chinese Universities, 2023, 44(1): 20220677.
Fig.1 SEM images of PS(A), PS@PDA(B), NHCS(C), and FePc⁃NHCS(D), XRD patterns of PS, PDA, PS@PDA, NHCS and FePc⁃NHCS(E) and TG curves of PS, PDA and PS@PDA measured under N2 atmosphere(F)
Fig.2 SEM images(A1―A3), XRD patterns(B), high resolution N1s XPS spectra(C), Raman spectra(D), N2 adsorption⁃desorption isotherms(E) and pore size distributions(inset) of NHCS⁃x(x=900, 1000, 1100)(A1) NHCS⁃900; (A2) NHCS⁃1000; (A3) NHCS⁃1100.
Fig.3 SEM images(A1―A3), XRD patterns(B), high resolution N1s (C) and Fe2p XPS spectra(D) of FePc⁃NHCS⁃x(x=900, 1000, 1100), and LSV of NCS⁃1000, FePc⁃NCS⁃1000, NHCS⁃x, FePc⁃NHCS⁃x(x=900, 1000, 1100), and Pt/C(20%) at 1600 r/min with a scan rate of 10 mV/s(E)(A1) FePc⁃NHCS⁃900; (A2) FePc⁃NHCS⁃1000; (A3) FePc⁃NHCS⁃1100.
Sample | C | N | O | Fe |
---|---|---|---|---|
FePc⁃NHCS⁃900 | 83.01 | 6.63 | 10.12 | 0.24 |
FePc⁃NHCS⁃1000 | 85.30 | 4.33 | 9.93 | 0.44 |
FePc⁃NHCS⁃1100 | 87.39 | 3.50 | 8.77 | 0.34 |
Table 1 Elemental content(%, atom fraction) in FePc-NHCS-x(x=900, 1000, 1100)
Sample | C | N | O | Fe |
---|---|---|---|---|
FePc⁃NHCS⁃900 | 83.01 | 6.63 | 10.12 | 0.24 |
FePc⁃NHCS⁃1000 | 85.30 | 4.33 | 9.93 | 0.44 |
FePc⁃NHCS⁃1100 | 87.39 | 3.50 | 8.77 | 0.34 |
Fig.4 SEM images of FePc⁃NHCS⁃1000⁃y(y=1, 2, 3 from left to right)(A), TEM(B), STEM(C1) and elemental mapping(C2—C4) images of FePc⁃NHCS⁃1000⁃2, and XRD patterns(D) and high resolution N1s XPS spectra(E) of FePc⁃NHCS⁃1000⁃y(y=1, 2, 3)
Fig.5 LSV of FePc⁃NHCS⁃1000⁃y(y=1, 2, 3) and Pt/C(20%) at 1600 r/min with a scan rate of 10 mV/s(A), different rotation speeds(B), and RRDE curves(C) of FePc⁃NHCS⁃1000⁃2 in O2⁃saturated 1 mol/L KOH with a scan rate of 10 mV/s, electron transfer number and peroxide yield of FePc⁃NHCS⁃1000⁃2 calculated from (C)(D)
1 | Wu M. G., Wang Y. Q., Wei Z. X., Wang L., Zhuo M., Zhang J. T., Han X. P., Ma J. M., J. Mater. Chem. A, 2018, 6(23), 10918—10925 |
2 | Tan H. B., Tang J., Kim J., Kaneti Y. V., Kang Y. M., Sugahara Y., Yamauchi Y., J. Am. Chem. Soc. A, 2019, 7(4), 1380—1393 |
3 | Huang X. X., Shen T., Zhang T., Qiu H. L., Gu X. X., Ali Z., Hou Y. L., Adv. Energy Mater., 2020, 10(11), 1900375 |
4 | Yan J., Zheng X. J., Wei C. H., Sun Z. H., Zeng K., Shen L. W., Sun J. W., Rummeli M., Yang R. Z., Carbon, 2021, 171,320—328 |
5 | Paul R., Zhu L., Chen H., Qu J., Dai L. M., Adv. Mater., 2019, 31, 1806403 |
6 | Li Y. N., Han J., Xu Z. L., Zhao R. F., Wang Y., Guo R., Langmuir, 2021, 37(5), 2001—2010 |
7 | Chen Y. F., Li Z. J., Zhu Y. B., Sun D. M., Liu X. E., Xu L., Tang Y. W., Adv. Mater., 2019, 31(8), 1806312 |
8 | Ying J., Li J., Jiang G. P., Cano Z. P., Ma Z., Zhong C., Su D., Chen Z. W., Appl. Catal. B, 2018, 225, 496—503 |
9 | Sun Y. B., Cao C. Y., Liu C., Liu J., Zhu Y. N., Wang X. S., Song W. G., Carbon, 2017, 125,139—145 |
10 | Wan X. K., Wu H. B., Guan B. Y., Luan D. Y., Lou X. W., Adv. Mater., 2020, 32(7), 1901349 |
11 | Zheng R. P., Liao S. J., Hou S. Y., Qiao X. C., Wang G. H., Liu L. N., Shu T., Du L., J. Mater. Chem. A, 2016, 4(20), 7859—7868 |
12 | Wang Y., Yuan H., Li Y. F., Chen Z. F., Nanoscale, 2015, 7(27), 11633—11641 |
13 | Alsudairi A., Li J. K., Ramaswamy N., Mukerjee S., Abraham K. M., Jia Q. Y., J. Phys. Chem. Lett., 2017, 8(13), 2881—2886 |
14 | Li S. J., Pasc A., Fierro V., Celzard A., J. Mater. Chem. A, 2016, 4(33), 12686—12713 |
15 | Liu T., Zhang L. Y., Cheng B., Yu J. G., Adv. Energy Mater., 2019, 9(17), 1803900 |
16 | Ning X. M., Li Y. H., Ming J. Y., Wang Q., Wang H. J., Cao Y. H., Peng F., Yang Y. H., Yu H., Chem. Sci., 2019, 10(6), 1589—1596 |
17 | Wang M. G., Li Y. N., Han J., J. Mater. Sci., 2020, 55(25), 11177—11187 |
18 | Gíslason P. M., Skúlason E., Nanoscale, 2019, 11(40), 18683—18690 |
19 | Liu R., Mahurin S. M., Li C., Unocic R. R., Idrobo J. C., Gao H. J., Pennycook S. J., Dai S., Angew. Chem. Int. Ed., 2011, 50(30), 6799—6802 |
20 | Liu X. H., Kang J. J., Dai Y., Dong C. C., Guo X. H., Jia X., Adv. Mater. Interfaces, 2018, 5(14), 1800303 |
21 | Tang J., Liu J., Salunkhe R. R., Wang T., Yamauchi Y., Chem. Commun., 2016, 52(3), 505—508 |
22 | Qian H. Y., Tang J., Hossain M. S. A., Bando Y., Wang X., Yamauchi Y., Nanoscale, 2017, 9(42), 16264—16272 |
23 | Luo Y. J., Chen Y. H., Xue Y. L., Chen J. W., Wang G., Wang R. L., Yu M., Zhang J., Small, 2022, 18(2), 2105594 |
24 | de Oliveira M. A. C., Ficca V. C. A., Gokhale R., Santoro C., Mecheri B., D’Epifanio A., Licoccia S., Atanassov P., J. Solid State Electrochem, 2021, 25(1),93—104 |
25 | Zhang Z. P., Sun J. T., Wang F., Dai L. M., Angew. Chem. Int. Ed., 2018, 57(29), 9176—9181 |
26 | Chen Z., Jiang S., Kang G., Nguyen D., Schatz G. C., van Duyne R. P., J. Am. Chem. Soc., 2019, 141(39), 15684—15692 |
27 | Zhang C. Z., Hao R., Yin H., Liu F., Hou Y. L., Nanoscale., 2012, 4(23), 7326—7329 |
28 | Xia W., Hunter M. A., Wang J. Y., Zhu G. X., Warren S. J., Zhao Y. J., Bando Y., Searles D. J., Yamauchi Y., Tang J., Chem. Sci., 2020, 11(35), 9584—9592 |
29 | Choi C. H., Choi W. S., Kasian O., Mechler A. K., Sougrati M. T., Brüller S., Strickland K., Jia Q. Y., Mukerjee S., Mayrhofer K. J. J., Jaouen F., Angew. Chem. Int. Ed., 2017, 56(30),8809—8812 |
30 | Xia W., Tang J., Li J. J., Zhang S. H., Wu K. C. W., He J. P., Yamauchi Y., Angew. Chem. Int. Ed., 2017, 58(38), 13354—13359 |
31 | Yuan K., Lutzenkirchen⁃Hecht D., Li L. B., Shuai L., Li Y. Z., Cao R., Qiu M., Zhuang X. D., Leung M. K. H., Chen Y. W., Scherf U., J. Am. Chem. Soc., 2020, 142(5), 2404—2412 |
32 | Zhang X. K., Huang X. B., Hu W. H., Huang Y. M., Int. J. Hydrog. Energy, 2019, 44(50), 27379—27389 |
33 | Ma L. T., Chen S. M., Pei Z. X., Huang Y., Liang G. J., Mo F. N., Yang Q., Su J., Gao Y. H., Zapien J. A., Zhi C. Y., ACS Nano, 2018, 12(2), 1949—1958 |
34 | Jiang L. L., Duan J. J., Zhu J. W., Chen S., Antonietti M., ACS Nano, 2020, 14(2), 2436—2444 |
35 | Jiang Y. Y., Lu Y. Z., Lv X. Y., Han D. G., Zhang Q. X., Niu L., Chen W., ACS Catalysis, 2013, 3(6), 1263—1271 |
[1] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[2] | CHENG Qian, YANG Bolong, WU Wenyi, XIANG Zhonghua. S-doped Fe-N-C as Catalysts for Highly Reactive Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220341. |
[3] | GU Yu, XI Baojuan, LI Jiangxiao, XIONG Shenglin. Structure Regulation of Single-atom Catalysts in Oxygen Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220036. |
[4] | ZHANG Xiaoyu, XUE Dongping, DU Yu, JIANG Su, WEI Yifan, YAN Wenfu, XIA Huicong, ZHANG Jianan. MOF-derived Carbon-based Electrocatalysts Confinement Catalyst on O2 Reduction and CO2 Reduction Reactions [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210689. |
[5] | HE Yujing, LI Jiale, WANG Dongyang, WANG Fuling, XIAO Zuoxu, CHEN Yanli. Zinc-based Activated Fe/Co/N Doped Biomass Carbon Electrocatalysts with High Oxygen Reduction Activity [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220475. |
[6] | MA Jun, ZHONG Yang, ZHANG Shanshan, HUANG Yijun, ZHANG Lipeng, LI Yaping, SUN Xiaoming, XIA Zhenhai. Design and Theoretical Calculation of Heteroatoms Doped Graphdiyne Towards Efficiently Catalyzing Oxygen Reduction and Evolution Reactions [J]. Chem. J. Chinese Universities, 2021, 42(2): 624. |
[7] | WANG Yuemin, MENG Qinglei, WANG Xian, GE Junjie, LIU Changpeng, XING Wei. Enhancement of Performance of Fe-N-C Catalysts by Copper and Sulfur Doping for the Oxygen Reduction Reaction [J]. Chem. J. Chinese Universities, 2020, 41(8): 1843. |
[8] | YIN Wenjing, LIU Xiao, QIAN Huidong, ZOU Zhiqing. Preparation and Oxygen Reduction Performance of Fe, N co-Doped arbon Nanoplate with High Density of Active Sites† [J]. Chem. J. Chinese Universities, 2019, 40(7): 1480. |
[9] | XU Zhaoquan, MA Junhong, SHI Minhui, FENG Chao, XIE Yahong, MI Hongyu. Preparation and Application of a Novel Natural Product-based Fe and N Codoped Carbon Catalyst for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1532. |
[10] | WANG Xiuli, HE Xingquan. Electrocatalytic Performance of Fe9S10 Nanoparticles Loaded Nitrogen and Sulphur Codoped Porous Carbon for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(7): 1524. |
[11] | HUANG Jipei,LI Yi,YANG Shenhui,ZHOU Yazhou,CHENG Xiaonong,ZHU Jia,YANG Juan. Synthesis of Three-dimensional Pt-Ag Aerogels and Their Electrocatalytic Performance Toward Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(5): 1063. |
[12] | DI Muxin, XIAO Guozheng, HUANG Peng, CAO Yihuan, ZHU Ying. Co/N Co-doped Carbon Nanotube/Graphene Composites as Efficient Electrocatalysts for Oxygen Reduction Reaction† [J]. Chem. J. Chinese Universities, 2018, 39(2): 343. |
[13] | LIU Pei, CHENG Qingqing, CHEN Chi, ZOU Liangliang, ZOU Zhiqing, YANG Hui. Preparation and Oxygen Reduction Reaction Catalytic Performance of Fe, N Co-doped Carbon Nanofibers with Encapsulated Iron Nitride† [J]. Chem. J. Chinese Universities, 2018, 39(11): 2492. |
[14] | KANG Huan, LI Shang, LIU Chang, GUO Wei, PAN Mu. Synthesis of Ordered Mesoporous Fe-N-C-PANI Catalyst via Self-assembly and Its Oxygen Reduction Reaction Activity in Acid Medium [J]. Chem. J. Chinese Universities, 2017, 38(8): 1423. |
[15] | LI Weilun, YAO Ying, ZHANG Cunzhong. Applications of Carbon Fiber Ultra-microelectrode and Powder Microelectrode in Exploring Influences of Non-aqueous Solvents and Cathode Materials on ORR and OER† [J]. Chem. J. Chinese Universities, 2017, 38(4): 642. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||