Chem. J. Chinese Universities ›› 2023, Vol. 44 ›› Issue (1): 20220666.doi: 10.7503/cjcu20220666
• Review • Previous Articles Next Articles
YANG Qingfeng, LYU Liang, LAI Xiaoyong()
Received:
2022-10-10
Online:
2023-01-10
Published:
2022-11-15
Contact:
LAI Xiaoyong
E-mail:xylai@nxu.edu.cn
Supported by:
CLC Number:
TrendMD:
YANG Qingfeng, LYU Liang, LAI Xiaoyong. Progress on Preparation and Electrocatalytic Application of Hollow MOFs[J]. Chem. J. Chinese Universities, 2023, 44(1): 20220666.
Year | Composition | Morphology | Size/nm | Specific area/(m2·g-1) | Preparation characteristics | Ref. |
---|---|---|---|---|---|---|
2011 | [Cu3(BTC)2] | Capsules | 375000 | 620 | Liquid⁃liquid interface | [ |
2012 | ZIF⁃8 | Microspheres | 970 | — | Hard⁃templating | [ |
2012 | Pd@ZIF⁃8 | Yolk⁃shell | 430 | 1643 | Hard⁃templating | [ |
2013 | HKUST⁃1 | Discrete octahedral | 75±28 | 1260 | Gas⁃liquid interface | [ |
2014 | Zn/Ni⁃MOFs⁃2 | Nanocubes | 300—500 | 433 | Solid⁃liquid interface | [ |
2015 | ZIF⁃8 | Nanospheres | 250 | — | Soft⁃templating | [ |
2015 | MIL⁃88A | Capsules | 440000 | — | Liquid⁃liquid interface | [ |
2016 | ZIF⁃67 | Prismatic | 480 | 28.1 | Solid⁃liquid interface | [ |
2017 | Cr⁃MOF(MIL⁃101) | Yolk⁃shell | 350 | 2847 | Selective etching | [ |
2018 | HNTM⁃Ir/Pt | Nanotubes | 1000 | 844 | Coordination modulation | [ |
2019 | ZIF⁃8 | Nanospheres | 300 | 1012 | Soft⁃templating | [ |
2019 | UiO⁃66(OH)2 | Octahedral⁃shaped particles | 400 | — | Selective etching | [ |
2019 | Co3S4/EC⁃MOF | Echinops⁃like | 500 | 110.1 | Hard⁃templating | [ |
2020 | Fe@NiCo⁃MOF HNSs | Nanospheres | 840 | 257 | Solvothermal | [ |
2020 | Ni/Co⁃MOFs | Yolk⁃shell | 3000 | 68 | Ion induction | [ |
2020 | MOF⁃5@ZIF⁃8 | Yolk⁃shell | 800 | — | Coordination modulation | [ |
2021 | Ru@NiCo⁃MOF HPNs | Porous nanospheres | 855 | — | Hydrothermal | [ |
2021 | CoCu⁃MOF NBs | Nanobox | 100 | 307 | Coordination modulation method | [ |
2021 | NiFe⁃MOFs | Nano bricks | 1600 | 17.22 | Solvothermal | [ |
2021 | H⁃PMOF | Mesoporous spherical shell | 90 | 120 | Hard⁃templating | [ |
2022 | PdAg@ZIF⁃8 | Yolk⁃shell | 350—450 | 1035 | Hard⁃templating | [ |
2022 | ZIF⁃8⁃HS | Nanospheres | 1000 | 1195 | Soft⁃templating | [ |
2022 | HM⁃MIL | Irregular octahedral | 220 | 941.47 | Selective etching | [ |
Table 1 Summary of different types of hollow MOFs
Year | Composition | Morphology | Size/nm | Specific area/(m2·g-1) | Preparation characteristics | Ref. |
---|---|---|---|---|---|---|
2011 | [Cu3(BTC)2] | Capsules | 375000 | 620 | Liquid⁃liquid interface | [ |
2012 | ZIF⁃8 | Microspheres | 970 | — | Hard⁃templating | [ |
2012 | Pd@ZIF⁃8 | Yolk⁃shell | 430 | 1643 | Hard⁃templating | [ |
2013 | HKUST⁃1 | Discrete octahedral | 75±28 | 1260 | Gas⁃liquid interface | [ |
2014 | Zn/Ni⁃MOFs⁃2 | Nanocubes | 300—500 | 433 | Solid⁃liquid interface | [ |
2015 | ZIF⁃8 | Nanospheres | 250 | — | Soft⁃templating | [ |
2015 | MIL⁃88A | Capsules | 440000 | — | Liquid⁃liquid interface | [ |
2016 | ZIF⁃67 | Prismatic | 480 | 28.1 | Solid⁃liquid interface | [ |
2017 | Cr⁃MOF(MIL⁃101) | Yolk⁃shell | 350 | 2847 | Selective etching | [ |
2018 | HNTM⁃Ir/Pt | Nanotubes | 1000 | 844 | Coordination modulation | [ |
2019 | ZIF⁃8 | Nanospheres | 300 | 1012 | Soft⁃templating | [ |
2019 | UiO⁃66(OH)2 | Octahedral⁃shaped particles | 400 | — | Selective etching | [ |
2019 | Co3S4/EC⁃MOF | Echinops⁃like | 500 | 110.1 | Hard⁃templating | [ |
2020 | Fe@NiCo⁃MOF HNSs | Nanospheres | 840 | 257 | Solvothermal | [ |
2020 | Ni/Co⁃MOFs | Yolk⁃shell | 3000 | 68 | Ion induction | [ |
2020 | MOF⁃5@ZIF⁃8 | Yolk⁃shell | 800 | — | Coordination modulation | [ |
2021 | Ru@NiCo⁃MOF HPNs | Porous nanospheres | 855 | — | Hydrothermal | [ |
2021 | CoCu⁃MOF NBs | Nanobox | 100 | 307 | Coordination modulation method | [ |
2021 | NiFe⁃MOFs | Nano bricks | 1600 | 17.22 | Solvothermal | [ |
2021 | H⁃PMOF | Mesoporous spherical shell | 90 | 120 | Hard⁃templating | [ |
2022 | PdAg@ZIF⁃8 | Yolk⁃shell | 350—450 | 1035 | Hard⁃templating | [ |
2022 | ZIF⁃8⁃HS | Nanospheres | 1000 | 1195 | Soft⁃templating | [ |
2022 | HM⁃MIL | Irregular octahedral | 220 | 941.47 | Selective etching | [ |
1 | Radwan A., Jin H. H., He D. P., Mu S. C., Nano⁃Micro Lett., 2021, 13(1), 1—32 |
2 | Wang W., Xu X. M., Zhou W., Shao Z. P., Adv. Sci., 2017, 4(4), 1600371 |
3 | Jadhav H. S., Roy A., Desalegan B. Z., Seo J. G., Sustain. Energ. Fuels, 2020, 4(1), 312—323 |
4 | Fang W. G., Hu H. B., Jiang T. T., Li G., Wu M. Z., Carbon, 2019, 146, 476—485 |
5 | Mattos L. V., Jacobs G., Davis B. H., Noronha F. B., Chem. Rev., 2012, 112(7), 4094—4123 |
6 | Tiwari J., Sultan S., Myung C. W., Yoon T., Li N. N., Ha M. R., Harzandi A. M., Park H. J., Kim D. Y., Chandrasekaran S. S., Nat. Energy, 2018, 3(9), 773—782 |
7 | Gur T. M., Energ. Environ. Sci., 2018, 11(10), 2696—2767 |
8 | Desalegn B. Z., Jadhav H. S., Seo J. G., Sustain. Energ. Fuels, 2020, 4(4), 1863—1874 |
9 | Seh Z. W., Kibsgaard J., Dickens C. F., Chorkendorff I., Norskov J. K., Jaramillo T. F., Science, 2017, 355, 6321 |
10 | Bandal H. A., Jadhav A. R., Tamboli A. H., Kim H., Electrochim. Acta, 2017, 249, 253—262 |
11 | Yaghi O. M., Li G. , Li H., Nature, 1995, 378(6558), 703—706 |
12 | Wu H. B., Lou X. W., Sci. Adv., 2017, 3(12), eaap9252 |
13 | Cai D. P., Liu B., Wang D. D., Wang L. L., Liu Y., Qu B. H., Duan X. C., Li Q. H., Wang T. H., J. Mater. Chem. A, 2016, 4(1), 183—192 |
14 | Chen Y. Z., Wang C. M., Wu Z. Y., Xiong Y. J., Xu Q., Yu S. H., Jiang H. L., Adv. Mater., 2015, 27(34), 5010—5016 |
15 | Xia W., Zou R. Q., An L., Xia D. G., Guo S. J., Energ. Environ. Sci., 2015, 8(2), 568—576 |
16 | Hu J., Chen M., Fang X. S., Wu L. W., Chem. Soc. Rev., 2011, 40(11), 5472—5491 |
17 | Ouyang W. X., Teng F. F., He J. H., Fang X. S., Adv. Funct. Mater., 2019, 29(9), 1807672 |
18 | Wang W. F., Qin S., Zhang R. R., Zhou P. P., Yang Q. H., Chen T. Y., Chem. J. Chinese Universities, 2019, 40(9), 1979—1987 |
王文峰, 秦山, 张荣荣, 周盼盼, 杨庆华, 陈天云. 高等学校化学学报, 2019, 40(9), 1979—1987 | |
19 | Li X. N., Wang Q. X., Fan Y., Yu M. M., Zhang H. S., Yang S. T., Chem. J. Chinese Universities, 2019, 40(9), 1949—1954 |
李向南, 王秋娴, 范涌, 于明明, 张会双, 杨书廷. 高等学校化学学报, 2019, 40(9), 1949—1954 | |
20 | Li X. L., Huang L., Duan H. J., Zhang L., Zhang H. J., Chem. J. Chinese Universities, 2019, 40(8), 1662—1669 |
李晓莉, 黄亮, 段红娟, 张力, 张海军. 高等学校化学学报, 2019, 40(8), 1662—1669 | |
21 | Li D., Zhao X., Yu R., Wang B., Wang H., Wang D., Inorg. Chem. Front., 2018, 5(3), 535—540 |
22 | Zhao X. X., Yu R. B., Tang H. J., Mao D., Qi J., Wang B., Zhang Y., Zhao H. J.,Hu W. P., Wang D., Adv. Mater., 2017, 29(34), 1700550 |
23 | Wang J. Y., Tang H. J., Zhang L. J., Ren H., Yu R. B., Jin Q., Qi J., Mao D., Yang M., Wang Y., Liu P. R., Zhang Y., Wen Y. R., Gu L., Ma G. H., Su Z. G., Tang Z. Y., Zhao H. J., Wang D., Nat. Energy, 2016, 1(5), 16050 |
24 | Xu S. M., Hessel C. M., Ren H., Yu R. B., Jin Q., Yang M., Zhao H. J., Wang D., Energy Environ. Sci., 2014, 7(2), 632—637 |
25 | Ren H., Yu R. B., Wang J. Y., Jin Q., Yang M., Mao D., Kisailus D., Zhao H. J., Wang D., Nano Lett., 2014, 14(11), 6679—6684 |
26 | Zhao X. X., Wang J. Y., Yu R. B., Wang D., J. Am. Chem. Soc., 2018, 140(49), 17114—17119 |
27 | Lai X. Y., Wang D., Han N., Du J., Li J., Xing C. J., Chen Y. F., Li X. T., Chem. Mater., 2010, 22(10), 3033—3042 |
28 | Tu J. C., Li N., Lai X. Y., Chi Y., Zhang Y. J., Wang W., Li X. T., Li J. X., Qiu S. L., Appl. Surf. Sci., 2010, 256(16), 5051—5055 |
29 | Mao D., Yao J. X., Lai X. Y., Yang M., Du J., Wang D., Small, 2011, 7(5), 578—582 |
30 | Zhao J. J., Zheng M. B., Lai X. Y., Lu H. L., Li N. W., Ling Z. X., Cao J. M., Mater. Lett., 2012, 75, 126—129 |
31 | Lai X. Y., Li P., Yang T. L., Tu J. C., Xue P., Scripta Mater., 2012, 67(3), 293—296 |
32 | Lai X. Y., Cao K., Shen G. X., Xue P., Wang D., Hu F., Zhang J. L., Yang Q. F., Wang X. Z., Sci. Bull., 2018, 63(3), 187—193 |
33 | Hu L., Huang Y. M., Zhang F. P., Chen Q. W., Nanoscale, 2013, 5(10), 4186—4190 |
34 | Cai Z. X., Wang Z. L., Kim J., Yamauchi Y., Adv. Mater., 2019, 31(11), 1804903 |
35 | Chen L. Y., Luque R., Li Y. W., Chem. Soc. Rev., 2017, 46(15), 4614—4630 |
36 | Dang S., Zhu Q. L., Xu Q., Nat. Rev. Mater., 2017, 3(1), 17075 |
37 | Qiu T. J., Gao S., Liang Z. B., Wang D. G., Tabassum H., Zhong R. Q., Zou R. Q., Angew. Chem. Int. Ed., 2021, 60(32), 17314—17336 |
38 | Liu D., Wan J. W., Pang G. S., Tang Z. Y., Adv. Mater., 2019, 31(38), 1803291 |
39 | Chen J. Q., Zhou Y.,Sun J. W., Zhu J. W., Wang X., Fu Y. S., Chin. J. Inorg. Chem., 2020, 37(11), 1221—1235 |
陈佳琪, 周焱, 孙敬文, 朱俊武, 汪信, 付永胜. 应用化学, 2020, 37(11), 1221—1235 | |
40 | Zhang C. H., Chen R. Z., Xing W. H., Chem. Ind. Eng. Prog., 2017, 36(4), 1333—1341 |
张春花, 陈日志, 邢卫红. 化工进展, 2017, 36(4), 1333—1341 | |
41 | Wang H. W., Zheng F. B., Xue G. X., Wang Y. L., Li G. D., Tang Z. Y., Sci. China Chem., 2021, 64(11), 1854—1874 |
42 | Huo J., Wang L., Irran E., Yu H. J., Gao J. M., Fan D. S., Li B., Wang J. J., Ding W. B., Amin A. M., Li C., Ma L., Angew. Chem. Int. Ed., 2010, 49(48), 9237—9241 |
43 | Wang H. L., Zhu Q. L., Zou R. Q., Xu Q., Chem, 2017, 2(1), 52—80 |
44 | Wei J. X., Cheng N. C., Liang Z. Y., Wu Y. F., Zou Z. G., Zhuang Z. Y., Yu Y., J. Mater. Chem. A, 2018, 6(46), 23336—23344 |
45 | Rçsler C., Aijaz A., Turner S., Filippousi M., Shahabi A., Xia W., Tendeloo G. V., Muhler M., Fischer R. A., Chem. Eur. J., 2016, 22(10), 3304—3311 |
46 | Liang Z. B., Qu C., Xia D. G., Zou R. Q., Xu Q., Angew. Chem. Int. Ed., 2018, 57(31), 9604—9633 |
47 | Nai J. W., Lou X. W., Adv. Mater., 2018, 31(38), 1706825 |
48 | Jiang Z., Li Z., Qin Z., Nanoscale, 2013, 5(23), 11770—11775 |
49 | Liu D., Wan J. W., Pang G. S., Tang Z. Y., Adv. Mater., 2019, 31(38), 1803291 |
50 | Li L. Y., Li Y. X., Jiao L., Liu X. S., Ma Z. T., Zeng Y. J., Zheng X. S., Jiang H. L., J. Am. Chem. Soc., 2022, 144(37), 17075—17085 |
51 | Liu T., Li P., Yao N., Kong T. G., Cheng G. Z., Chen S. L., Luo W., Adv. Mater., 2019, 31(21), 1806672 |
52 | Sun X., He G. H., Xiong C. X., Wang C. Y., Lian X., Hu L. F., Li Z. K., Dalgarno S. J., Yang Y. W., Tian J., ACS Appl. Mater. Inter., 2021, 13(3), 3679—3693 |
53 | Zhang X., Qu N., Yang S. X., Lei D., Liu A. M., Zhou Q., Mater. Chem. Front., 2021, 5(1), 482—491 |
54 | Li Z. M., Lai X. Y., Wang H., Mao D., Xing C. J., Wang D., J. Phys. Chem. C, 2009, 113(7), 2792—2797 |
55 | Mao D., Wan J. W., Wang J. Y., Wang D., Adv. Mater., 2019, 31(38), 1802874 |
56 | Li M., Mao D., Wang D., Chin. Sci. Bull., 2019, 64(34), 3516—3525 |
李萌, 毛丹, 王丹. 科学通报, 2019, 64(34), 3516—3525 | |
57 | Lai X. Y., Li J., Korgel B. A., Dong Z. H., Li Z. M., Su F. B., Du J., Wang D., Angew. Chem. Int. Ed., 2011, 50(12), 2738—2741 |
58 | Li F. Y., Wu Y. J., Lin Y. X., Li J. H., Sun Y. J., Nan H. X., Wu M., Dong H. F., Shi K. X., Liu Q. B., J. Colloid. Interf. Sci., 2022, 626, 535—543 |
59 | Pan J. D., Sun Y. J., Wu Y. J., Li J. H., Huang W. Z., Shi K. X., Lin Y. X., Dong H. F., Liu Q. B., Carbon, 2022, 198, 80—90 |
60 | Li F. Y., Li J. H., Wu Y. J., Shi K. X., Liu Q. B., Peng H. J., Prog. Chem., 2022, 34(6), 1369—1383 |
李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. 化学进展, 2022, 34(6), 1369—1383 | |
61 | Wu Y. J., Li D., Pan J. D., Sun Y. J., Huang W. Z., Wu M., Zhang B. K., Pan F., Shi K. X., Liu Q. B., J. Mater. Chem. A, 2022, 10(30), 16309—16318 |
62 | Caruso F., Caruso R. A., Mohwald H., Science, 1998, 282(5391), 1111—1114 |
63 | Lee H. L., Cho W., Oh M., Chem. Commun., 2012, 48(2), 221—223 |
64 | Kuo C. H., Tang Y., Chou L. Y., Sneed B. T., Brodsky C. N., Zhao Z., Tsung C. K., J. Am. Chem. Soc., 2012, 134(35), 14345—14348 |
65 | Li C., Li L., Yu S., Jiao X. L., Chen D. R., Adv. Mater. Technol., 2016, 1(7), 1600127—1600135 |
66 | Wang S., Fan Y., Teng J., Fan Y. Z., Jiang J. J., Wang H. P., Grutzmacher H., Wang D., Su C. Y., Small, 2016, 12(41), 5702—5709 |
67 | Zhang Y. M., Zhang X., Dai T. L., Li J., Mater. Lett., 2019, 240, 44—46 |
68 | Xu H., Wang W., Angew. Chem. Int. Ed., 2007, 46(9), 1489—1492 |
69 | Wang X., Wu X. L., Guo Y. G., Zhong Y. T., Cao X. Q., Ma Y., Yao J. N., Adv. Funct. Mater., 2010, 20(10), 1680—1686 |
70 | Sun H., Lai X. Y., Chem. J. Chinese Universities, 2020, 41(5), 855—871 |
孙辉, 赖小勇. 高等学校化学学报, 2020, 41(5), 855—871 | |
71 | Wang X. J., Feng J., Bai Y. C., Zhang Q., Yin Y. D., Chem. Rev., 2016, 116(18), 10983—11060 |
72 | Lou X. W., Archer L. A., Yang Z., Adv. Mater., 2008, 20(21), 3987—4019 |
73 | Kim S. S., Zhang W. Z., Pinnavaia T. J., Science, 1998, 282(5392), 1302—1305 |
74 | Xu H. L., Wang W. Z., Angew. Chem. Int. Ed., 2007, 46(9), 1489—1492 |
75 | Liang G. D., Xu J. T., Wang X. S., J. Am. Chem. Soc., 2009, 131(15), 5378—5379 |
76 | McHale R., Liu Y., Ghasdian N., Hondow N. S., Ye S., Lu Y., Brydson R., Wang X., Nanoscale, 2011, 3(9), 3685—3694 |
77 | Cao X., Dai L., Wang L. Y., Liu J., Lei J. D., Mater. Lett., 2015, 161, 682—685 |
78 | Du Y. J., Gao J., Zhou L. Y., Ma L., He Y., Zheng X. F., Huang Z. H., Jiang Y. J., Adv. Sci., 2019, 6(6), 1801684 |
79 | Qin Z., Li H., Yang X. F., Chen L. Y., Li Y. W., Shen K., Appl. Catal. B: Environ., 2022, 307, 121163 |
80 | Carne⁃Sanchez A., Imaz I., Cano⁃Sarabia M., Maspoch D., Nat. Chem., 2013, 5(3), 203—211 |
81 | Liu C. C., Zhang J. L., Zheng L. R., Zhang J., Sang X. X., Kang X. C., Zhang B. X., Luo T., Tan X. N., Han B. X., Angew. Chem. Int. Ed., 2016, 55(38), 11372—11376 |
82 | Rodenas T., Luz I., Prieto G., Seoane B., Miro H., Corma A., Kapteijn F., Xamena F. X. L. I., Gascon J., Nat. Mater., 2015, 14(1), 48—55 |
83 | Zhao M. T., Huang Y., Peng Y. W., Huang Z. Q., Ma Q. L., Zhang H., Chem. Soc. Rev., 2018, 47(16), 6267—6295 |
84 | Ameloot R., Vermoortele F., Vanhove W., Roeffaers M. B. J., Sels B. F., De Vos D. E., Nat. Chem., 2011, 3(5), 382—387 |
85 | Jeong G. Y., Ricco R., Liang K., Ludwig J., Kim J. O., Falcaro P., Kim D. P., Chem. Mater., 2015, 27(23), 7903—7909 |
86 | Hu J., Chen M., Fang X. S., Wu L. W., Chem. Soc. Rev., 2011,40(11), 5472—5491 |
87 | Xu X. B., Zhang Z. C., Wang X., Adv. Mater., 2015, 27(36), 5365—5371 |
88 | Zhang Z. C., Chen Y. F., He S., Zhang J. C., Xu X. B., Yang Y., Nosheen F., Saleem F., He W., Wang X., Angew. Chem. Int. Ed., 2014, 53(46), 12517—12521 |
89 | Yu L., Yang J. F., Lou X. W., Angew. Chem. Int. Ed., 2016, 55(43), 13422—13426 |
90 | Li D., Wang H., Zhang X., Sun H., Dai X. P., Yang Y., Ran L., Li X. S., Ma X. Y., Gao D. W., Cryst. Growth Des., 2014, 14(11), 5856—5864 |
91 | He T., Chen S. M., Ni B., Gong Y., Wu Z., Song L., Gu L., Hu W. P., Wang X., Angew. Chem. Int. Ed., 2018, 57(13), 3493—3498 |
92 | Yu D. B., Shao Q., Song Q. J., Cui J. W., Zhang Y. L., Wu B., Ge L., Wang Y., Zhang Y., Qin Y. Q., Vajtai R., Ajayan P. M., Wang H. T., Xu T. W., Wu Y. C., Nat. Commun., 2020, 11(1), 927 |
93 | Liu W. X., Huang J. J., Yang Q., Wang S. J., Sun X. M., Zhang W. N., Liu J. F., Huo F. W., Angew. Chem. Int. Ed., 2017, 56(20), 5512—5516 |
94 | Luo L. S., Lo W. S., Si X. M., Li H. L., Wu Y. C., An Y. Y., Zhu Q. L., Chou L. Y., Li T., Tsung C. K., J. Am. Chem. Soc., 2019, 141(51), 20365—20370 |
95 | Tao F. C., Tian L., Liu Z. X., Cui R. X., Liu M. Y., Kang X. M., Liu Z. L., J. Mater. Chem. A, 2022, 10(26), 14020—14027 |
96 | Sultan S., Tiwari J. N., Singh A. N., Zhumagali S., Ha M., Myung C. W., Thangavel P., Kim K. S., Adv. Energy Mater., 2019, 9(22), 1900624 |
97 | Li C., Li X. J., Zhao Z. Y., Li F. L., Xue, J. Y., Niu Z., Gu H. W., Braunstein P., Lang J. P., Nanoscale, 2020, 12(26), 14004—14010 |
98 | Liu D. M., Xu H., Wang C., Shang H. Y., Yu R., Wang Y., Li J., Li X. C., Du Y. K., Inorg. Chem., 2021, 60(8), 5882—5889 |
99 | Cheng W. R., Wu Z. P., Luan D. Y., Zang S. Q., Lou X. W., Angew. Chem. Int. Ed., 2021, 60(50), 26397—26402 |
100 | Ma F. X., Lyu F. C., Diao Y. X., Zhou B. B., Wu J. H., Kang F. W., Li Z. B., Xiao X. F., Wang P., Lu J., Li Y. Y., Nano Res., 2022, 15(4), 2887—2894 |
101 | Ahn W., Park M. G., Lee D. U., Seo M. H., Jiang G. P., Cano Z. P., Hassan F. M., Chen Z. W., Adv. Funct. Mater., 2018, 28(28), 1802129 |
102 | Shinde S. S., Lee C. H., Jung J. Y., Wagh N. K., Kim S. H., Kim D. H., Lin C., Lee S. U., Lee J. H., Energy Environ. Sci., 2019, 12(2), 727—738 |
[1] | CHEN Shaochen, CHENG Min, WANG Shihui, WU Jinkui, LUO Lei, XUE Xiaoyu, JI Xu, ZHANG Changchun, ZHOU Li. Transfer Learning Modeling for Predicting the Methane and Hydrogen Delivery Capacity of Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(2): 20220459. |
[2] | ZHU Kerun, REN Wenxuan, ZHANG Wei, LI Wei. Salt-templated Synthesis and Morphological Control of Monodisperse Hollow Mesoporous Structures [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220607. |
[3] | LIU Shuanghong, XIA Siyu, LIU Shiqi, LI Min, SUN Jiajie, ZHONG Yong, ZHANG Feng, BAI Feng. Current Advances of Hollow All-solid-state Z-Scheme Photocatalysts [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220512. |
[4] | ZOU Yingying, ZHANG Chaoqi, YUAN Ling, LIU Chao, YU Chengzhong. Recent Advances in Metal-organic Framework Derived Hollow Superstructures: Synthesis and Applications [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220613. |
[5] | WANG Sijia, HOU Lu, LI Chenglong, LI Wencui, LU Anhui. Recent Advances in Synthesis and Applications of Hollow Nano-carbons [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220637. |
[6] | SHEN Xinyi, ZHANG Sen, WANG Shutao, SONG Yongyang. Synthesis Strategies for Polymer Hollow Particles [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220627. |
[7] | WU Yucai, DU Huan, ZHU Jiexin, XU Nuo, ZHOU Liang, MAI Liqiang. Intricate Hollow Structured Materials: Synthesis and Energy Applications [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220689. |
[8] | LU Yu, WANG Tie. Research Progress of Hollow Metal-organic Frameworks [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220662. |
[9] | WANG Hui, ZHAO Decai, YANG Nailiang, WANG Dan. Gate Keeper in the Smart Hollow Drug Carrier [J]. Chem. J. Chinese Universities, 2023, 44(1): 20220237. |
[10] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[11] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[12] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[13] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[14] | HAN Fuchao, LI Fujin, CHEN Liang, HE Leiyi, JIANG Yunan, XU Shoudong, ZHANG Ding, QI Lu. Enhance of CoSe2/C Composites Modified Separator on Electrochemical Performance of Li-S Batteries at High Sulfur Loading [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220163. |
[15] | WANG Ruhan, JIA Shunhan, WU Limin, SUN Xiaofu, HAN Buxing. CO2-involved Electrochemical C—N Coupling into Value-added Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220395. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||