Chem. J. Chinese Universities ›› 2021, Vol. 42 ›› Issue (10): 3151.doi: 10.7503/cjcu20210372
• Physical Chemistry • Previous Articles Next Articles
GONG Shanshan1,2, WU Tong1, WANG Guange1, HUANG Qing1,2(), SU Yuefeng1,2, WU Feng1,2
Received:
2021-06-01
Online:
2021-10-10
Published:
2021-10-10
Contact:
HUANG Qing
E-mail:huangqing3121@sina.com
Supported by:
CLC Number:
TrendMD:
GONG Shanshan, WU Tong, WANG Guange, HUANG Qing, SU Yuefeng, WU Feng. Screening of Deep Eutectic Solvent Based on Efficient Recovery of Spent Lithium⁃ion Battery Cathode Materials[J]. Chem. J. Chinese Universities, 2021, 42(10): 3151.
Sample | Component | Molar ratio | Mass ratio | Sample | Component | Molar ratio | Mass ratio |
---|---|---|---|---|---|---|---|
DES?1 | ChCl/Oxa | 1∶1 | 6.98∶4.52 | DES?7 | ChCl/Glu | 1∶1 | 6.98∶6.61 |
DES?2 | ChCl/Oxa/H2O | 1∶1∶1 | 6.98∶4.52∶0.90 | DES?8 | ChCl/Glu/H2O | 1∶1∶1 | 6.98∶6.61∶0.90 |
DES?3 | ChCl/Oxa/Ethanol | 1∶1∶1 | 6.98∶4.52∶2.30 | DES?9 | ChCl/Glu/Ethanol | 1∶1∶1 | 6.98∶6.61∶2.30 |
DES?4 | ChCl/Mal | 1∶1 | 6.98∶5.20 | DES?10 | ChCl/Ben | 1∶1 | 6.98∶7.91 |
DES?5 | ChCl/Mal/H2O | 1∶1∶1 | 6.98∶5.20∶0.90 | DES?11 | ChCl/Ben/H2O | 1∶1∶1 | 6.98∶7.91∶0.90 |
DES?6 | ChCl/Mal/Ethanol | 1∶1∶1 | 6.98∶5.20∶2.30 | DES?12 | ChCl/Ben/Ethanol | 1∶1∶1 | 6.98∶7.91∶2.30 |
Sample | Component | Molar ratio | Mass ratio | Sample | Component | Molar ratio | Mass ratio |
---|---|---|---|---|---|---|---|
DES?1 | ChCl/Oxa | 1∶1 | 6.98∶4.52 | DES?7 | ChCl/Glu | 1∶1 | 6.98∶6.61 |
DES?2 | ChCl/Oxa/H2O | 1∶1∶1 | 6.98∶4.52∶0.90 | DES?8 | ChCl/Glu/H2O | 1∶1∶1 | 6.98∶6.61∶0.90 |
DES?3 | ChCl/Oxa/Ethanol | 1∶1∶1 | 6.98∶4.52∶2.30 | DES?9 | ChCl/Glu/Ethanol | 1∶1∶1 | 6.98∶6.61∶2.30 |
DES?4 | ChCl/Mal | 1∶1 | 6.98∶5.20 | DES?10 | ChCl/Ben | 1∶1 | 6.98∶7.91 |
DES?5 | ChCl/Mal/H2O | 1∶1∶1 | 6.98∶5.20∶0.90 | DES?11 | ChCl/Ben/H2O | 1∶1∶1 | 6.98∶7.91∶0.90 |
DES?6 | ChCl/Mal/Ethanol | 1∶1∶1 | 6.98∶5.20∶2.30 | DES?12 | ChCl/Ben/Ethanol | 1∶1∶1 | 6.98∶7.91∶2.30 |
Sample | Appearance | δ | |
---|---|---|---|
DES?1 | Transparent viscous liquid | 3307.9(O―H), 1724.2(C=O), 1474.6 (―O―H), 950.0(N―CH3) | 3.79―3.84(―CH2―O―), 3.19―3.27(―N―CH2―), 2.97(―N―CH3) |
DES?4 | Transparent viscous liquid | 2930.2(―C―CH2), 1717.2(C=O), 1476.7(―O―H), 951.6(N―CH3) | 3.93―3.97(―CH2―O―), 3.40―3.43(―N―CH2―), 3.09(―N―CH3) |
DES?7 | Transparent liquid | 2946.3(―C―CH2), 1716.7(C=O), 1477.8(―O―H), 1147.8(―CH2―), 951.7(N―CH3) | 3.5(―N―CH2―), 3.17(―N―CH3), 2.39―2.43 (―CH2―C=O―), 1.80―1.87(―CH2―) |
DES?10 | Transparent liquid | 2946.3(―C―CH2), 1716.7(C=O), 1477.8(―O―H), 1147.8(―CH2―), 951.7(N―CH3) | 7.66―7.68(Ar―H), 7.38―7.44(Ar―H), 3.84―3.88 (―CH2―O―), 3.29―3.32(―N―CH2―), 2.99(―N―CH3) |
Sample | Appearance | δ | |
---|---|---|---|
DES?1 | Transparent viscous liquid | 3307.9(O―H), 1724.2(C=O), 1474.6 (―O―H), 950.0(N―CH3) | 3.79―3.84(―CH2―O―), 3.19―3.27(―N―CH2―), 2.97(―N―CH3) |
DES?4 | Transparent viscous liquid | 2930.2(―C―CH2), 1717.2(C=O), 1476.7(―O―H), 951.6(N―CH3) | 3.93―3.97(―CH2―O―), 3.40―3.43(―N―CH2―), 3.09(―N―CH3) |
DES?7 | Transparent liquid | 2946.3(―C―CH2), 1716.7(C=O), 1477.8(―O―H), 1147.8(―CH2―), 951.7(N―CH3) | 3.5(―N―CH2―), 3.17(―N―CH3), 2.39―2.43 (―CH2―C=O―), 1.80―1.87(―CH2―) |
DES?10 | Transparent liquid | 2946.3(―C―CH2), 1716.7(C=O), 1477.8(―O―H), 1147.8(―CH2―), 951.7(N―CH3) | 7.66―7.68(Ar―H), 7.38―7.44(Ar―H), 3.84―3.88 (―CH2―O―), 3.29―3.32(―N―CH2―), 2.99(―N―CH3) |
Leachate | Reductant | t/min | Temperature/℃ | Solid/Liquid ratio/(g·L-1) | Leaching efficiency of Li(%) | Leaching efficiency of Co(%) | Ref. |
---|---|---|---|---|---|---|---|
Citric acid(2.0 mol/L) | H2O2(2%) | 80 | 70 | 50 | 99.0 | 98.0 | [ |
Malic acid(1.5 mol/L) | H2O2(2%) | 40 | 90 | 20 | 99.0 | 93.0 | [ |
Succinic acid(1.5 mol/L) | H2O2(4%) | 40 | 70 | 15 | 94.7 | 99.8 | [ |
Lactic acid(1.5 mol/L) | H2O2(0.5%) | 20 | 70 | 20 | 97.7 | 98.9 | [ |
Phosphoric acid(1.5 mol/L) | Glucose (0.02 mol/L) | 120 | 80 | 2 | 100 | 98.0 | [ |
Citric acid(1.5 mol/L) | Ascorbic acid (0.02 mol/L) | 360 | 80 | 2 | 100 | 80.0 | [ |
Ascorbic acid(1.25 mol/L) | — | 20 | 70 | 25 | 98.5 | 94.8 | [ |
Oxalic acid(1.0 mol/L) | — | 120 | 80 | 50 | 98.0 | 68.0 | [ |
ChCl/EG DES (1∶2, molar ratio) | — | 1440 | 220 | 22 | — | 94.1 | [ |
ChCl/U DES (1∶2, molar ratio) | — | 720 | 180 | 24 | 94.7 | 97.9 | [ |
ChCl/PTSA/H2O DES (1∶1∶2, molar ratio) | — | 15 | 90 | 60 | 100 | 100 | [ |
ChCl/Citric acid DES (1∶2, molar ratio) | Al(12%), Cu(24%) | 60 | 40 | 20 | 93.0 | 98.0 | [ |
ChCl/Ben/Ethanol DES (1∶1∶1, molar ratio) | — | 60 | 90 | 20 | 98.6 | 95.2 | This work |
Leachate | Reductant | t/min | Temperature/℃ | Solid/Liquid ratio/(g·L-1) | Leaching efficiency of Li(%) | Leaching efficiency of Co(%) | Ref. |
---|---|---|---|---|---|---|---|
Citric acid(2.0 mol/L) | H2O2(2%) | 80 | 70 | 50 | 99.0 | 98.0 | [ |
Malic acid(1.5 mol/L) | H2O2(2%) | 40 | 90 | 20 | 99.0 | 93.0 | [ |
Succinic acid(1.5 mol/L) | H2O2(4%) | 40 | 70 | 15 | 94.7 | 99.8 | [ |
Lactic acid(1.5 mol/L) | H2O2(0.5%) | 20 | 70 | 20 | 97.7 | 98.9 | [ |
Phosphoric acid(1.5 mol/L) | Glucose (0.02 mol/L) | 120 | 80 | 2 | 100 | 98.0 | [ |
Citric acid(1.5 mol/L) | Ascorbic acid (0.02 mol/L) | 360 | 80 | 2 | 100 | 80.0 | [ |
Ascorbic acid(1.25 mol/L) | — | 20 | 70 | 25 | 98.5 | 94.8 | [ |
Oxalic acid(1.0 mol/L) | — | 120 | 80 | 50 | 98.0 | 68.0 | [ |
ChCl/EG DES (1∶2, molar ratio) | — | 1440 | 220 | 22 | — | 94.1 | [ |
ChCl/U DES (1∶2, molar ratio) | — | 720 | 180 | 24 | 94.7 | 97.9 | [ |
ChCl/PTSA/H2O DES (1∶1∶2, molar ratio) | — | 15 | 90 | 60 | 100 | 100 | [ |
ChCl/Citric acid DES (1∶2, molar ratio) | Al(12%), Cu(24%) | 60 | 40 | 20 | 93.0 | 98.0 | [ |
ChCl/Ben/Ethanol DES (1∶1∶1, molar ratio) | — | 60 | 90 | 20 | 98.6 | 95.2 | This work |
1 | Zhao Y. L., Yuan X. Z., Jiang L. B., Wen J., Wang H., Guan R. P., Zhang J. J., Zeng G. M., Chem. Eng. J., 2020, 383, 123089 |
2 | Fan E. S., Yang J. B., Huang Y. X., Lin J., Arshad. F., Wu F., Li L., Chen R. J., ACS Appl. Energy Mater., 2020, 3(9), 8532—8542 |
3 | Fan E. S., Li L., Wang Z. P., Lin J., Huang Y. Y., Yao Y., Chen R. J., Wu F., Chem. Rev., 2020, 120(14), 7020—7063 |
4 | Boxall N. J., Adamek N., Cheng K. Y., Haque N., Bruckard W., Kaksonen A. H., Waste Manage., 2018, 74, 435—445 |
5 | Chen X. P., Ma H. R., Luo C. B., Zhou T., J. Hazard. Mater., 2017, 326, 77—86 |
6 | Natarajan S., Aravindan V., Adv. Energy Mater., 2018, 8(33), 1802303 |
7 | Chitre A., Freake D., Lander L., Edge J., Titirici M. M., Batteries Supercaps., 2020, 3(11), 1125 |
8 | Xu P. P., Dai Q., Gao H. P., Liu H. D., Zhang M. H., Li M. Q., Chen Y., An K., Meng Y. S., Liu P., Li Y. R., Spangenberger J. S., Gaines L., Lu J., Chen Z., Joule, 2020, 4(12), 2609—2626 |
9 | Wang M. M., Tan Q. Y., Li J. H., Environ. Sci. Technol., 2018, 52(22), 13136—13143 |
10 | Wang M. M., Zhang C. C., Zhang F. S., Waste Manage., 2017, 67, 232—239 |
11 | Ciez R. E., Whitacre J. F., Nat. Sustain., 2019, 2(2), 148—156 |
12 | Gao W. F., Zhang X. H., Zheng X. H., Lin X., Cao H. B., Zhang Y., Sun Z., Environ. Sci. Technol., 2017, 51(3), 1662—1669 |
13 | Meng Q., Zhang Y. J., Dong P., Waste Manage., 2017, 64, 214—218 |
14 | Yang J., Qin J. T., Li F. C., Jiang L. X., Lai Y. Q., Liu F. Y., Jia M., J. Cent. South Univ.(Sci. Technol.), 2020, 51(12), 3261—3278(杨健, 秦吉涛, 李芳成, 蒋良兴, 赖延清, 刘芳洋, 贾明. 中南大学学报(自然科学版), 2020, 51(12), 3261—3278) |
15 | Li L. L., Cao L. J., Mai Y. X., Men Y. F., Yang W., Chen S. Z., Energy Storage Sci. Technol., 2020, 9(6), 1641—1650(李林林, 曹林娟, 麦永雄, 门一飞, 杨伟, 陈胜洲. 储能科学与技术, 2020, 9(6), 1641—1650) |
16 | Billy E., Joulié M., Laucournet R., Boulineau A., De V. E., Meyer D., ACS Appl. Mater. Interfaces, 2018, 10(19), 16424—16435 |
17 | Abbott A. P., Capper G., Davies D. L., Rasheed R. K., Tambyrajah V., Chem. Commun., 2003, (1), 70—71 |
18 | Gurkan B. E., Maginn E. J., Pentzer E. B., J. Phys. Chem. B,2020, 124(50), 11313—11315 |
19 | Hansen B. B., Spittle S., Chen B., Poe D., Zhang Y., Klein J. M., Horton A., Adhikari L., Zelovich T., Doherty B., Gurkan B., Maginn E. J., Ragauskas A., Dadmun M., Zawodzinski T. A., Baker G. A., Tuckerman M. E., Savinell R. F., Sangoro J. R., Chem. Rev., 2021, 121(3), 1232—1285 |
20 | Paiva A., Craveiro R., Aroso I., Martins M., Reis R. L., Duarte A. R., ACS Sustainable Chem. Eng., 2014, 2(5), 1063—1071 |
21 | Carriazo D., Serrano M. C., Gutierrez M. C., Ferrer M. L., Del M. F., Chem. Soc. Rev., 2012, 41(14), 4996—5014 |
22 | Abbott A. P., Boothby D., Capper G., Davies D. L., Rasheed R. K., J. Am. Chem. Soc., 2004, 126(29), 9142—9147 |
23 | Tran M. K., Rodrigues M. F., Kato K., Babu G., Ajayan P. M., Nat. Energy, 2019, 4(4), 339—345 |
24 | Roldán⁃Ruiz M. J., Ferrer M. L., Gutiérrez M. C., Monte F. D., ACS Sustainable Chem. Eng., 2020, 8(14), 5437—5445 |
25 | Wang S. B., Zhang Z. T., Lu Z. G., Xu Z. H., Green Chem., 2020, 22(14), 4473—4482 |
26 | Sirviö J. A., Visanko M., Liimatainen H., Biomacromolecules, 2016, 17(9), 3025—3032 |
27 | Hammond O. S., Bowron D. T., Jackson A. J., Arnold T., Sanchez⁃Fernandez A., Tsapatsaris N., Garcia S. V., Edler K. J., J. Phys. Chem. B,2017, 121(31), 7473—7483 |
28 | Yu M., Zhang Z. H., Xue F., Yang B., Guo G. H., Qiu J. H., Sep. Purif. Technol., 2019, 215, 398—402 |
29 | Rodriguez R. N., Machiels L., Binnemans K., ACS Sustainable Chem. Eng., 2019, 7(4), 3940—3948 |
30 | Florindo C., Oliveira F. S., Rebelo L. P. N., Fernandes A. M., Marrucho I. M., ACS Sustainable Chem. Eng., 2014, 2(10), 2416—2425 |
31 | Delgado⁃Mellado N., Larriba M., Navarro P., Rigual V., Ayuso M., García J., Rodríguez F., J. Mol. Liq., 2018, 260, 37—43 |
32 | Gontrani L., Plechkova N. V., Bonomo M., ACS Sustainable Chem. Eng., 2019, 7(14), 12536—12543 |
33 | Peeters N., Binnemans K., Riaño S., Green Chem., 2020, 22(13), 4210—4221 |
34 | Zhao J. J., Zhang B. L., Xie H. W., Qu J. K., Qu X., Xing P. F., Yin H. Y., Environ Res., 2020, 181, 108803 |
35 | Fu Y. P., He Y. Q., Chen H. C., Ye C. L., Lu Q. C., Li R. N., Xie W. N., Wang J., J. Ind. Eng. Chem.,2019, 79, 154—162 |
36 | Chen X. P., Luo C. B., Zhang J. X., Kong J. R., Zhou T., ACS Sustainable Chem. Eng., 2015, 3(12), 3104—3113 |
37 | Li L., Dunn J. B., Zhang X. X., Gaines L., Chen R. J., Wu F., Amine K., J. Power Sources, 2013, 233, 180—189 |
38 | Li L., Qu W. J., Zhang X. X., Lu J., Chen R. J., Wu F., Amine K., J. Power Sources, 2015, 282, 544—551 |
39 | Li L., Fan E. S., Guan Y. B., Zhang X. X., Xue Q., Wei L., Wu F., Chen R. J., ACS Sustainable Chem. Eng., 2017, 5(6), 5224—5233 |
40 | Nayaka G. P., Manjanna J., Pai K. V., Vadavi R., Keny S. J., Ripathi V. S., Hydrometallurgy, 2015, 151, 73—77 |
41 | Li L., Lu J., Ren Y., Zhang X. X., Chen R. J., Wu F., Amine K., J. Power Sources, 2012, 218, 21—27 |
42 | Sun L., Qiu K. Q., Waste Manage., 2012, 32(8), 1575—1582 |
[1] | MIN Jing, WANG Liyan. 1H NMR Study on the Conformation of Aromatic Amides Limited by Three-center Hydrogen Bonds [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220084. |
[2] | ZHANG Yong, XU Jun, BAO Yu, CUI Shuxun. Quantifying the Degree of Weakening Effect of Nonpolar Organic Solvent on the Strength of Intramolecular Hydrogen Bonding by Single-molecule Force Spectroscopy [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210863. |
[3] | CUI Shaoli, ZHANG Weijia, SHAO Xueguang, CAI Wensheng. Revealing the Effect of Threonine on the Binding Ability of Antifreeze Proteins with Ice Crystals by Free-energy Calculations [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210838. |
[4] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[5] | GAO Huiling, CAO Zhenzhen, GU Fang, WANG Haijun. Monte Carlo Simulation on Self-healing Behaviour of Hydrogen-bonded Hydrogel [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220482. |
[6] | WANG Le, QIN Liulei, LIU Yang, REN Li, XU Huiting, LIU Zunqi. Synthesis, Structure and Dielectric Properties of One-dimensional Chain Hydrogen Glycine Supramolecular Compound [(Gly)2+(18-crown-6)2(MnCl4)2‒] [J]. Chem. J. Chinese Universities, 2021, 42(3): 691. |
[7] | NI Qingsheng, DU Miao, SHAN Guorong, SONG Yihu, WU Ziliang, ZHENG Qiang. Regulation of Rheological Behavior of Polyvinyl Alcohol Aqueous Solution by One-dimensional Particles [J]. Chem. J. Chinese Universities, 2021, 42(12): 3738. |
[8] | BAI Lan, ZHAI Lei, WANG Changou, HE Minhui, MO Song, FAN Lin. Thermal Expansion Behavior of Amide-containing Polyimide Films with Ultralow Thermal Expansion Coefficient † [J]. Chem. J. Chinese Universities, 2020, 41(4): 795. |
[9] | QIN Liulei,LIU Yang,GUAN Xiaoqin,ZHENG Xiaoyuan,ZHANG Ziyu,LIU Zunqi. Synthesis and Switchable Dielectric Properties of an Inorganic-organic Hybrid Complex [H2(DABCO)CuCl4]·H2O † [J]. Chem. J. Chinese Universities, 2020, 41(1): 70. |
[10] | WU Rong,WANG Huimin,CAO Jun,CHEN Luyao,SU Erzheng. Simultaneous Extraction of Salidroside and Tyrosol from Rhodiolarosea L. Using Tailor-made Deep Eutectic Solvents† [J]. Chem. J. Chinese Universities, 2019, 40(5): 918. |
[11] | XU Yan,LIU Cui,HAN Chengjuan,PAN Mingyu,SUN Zhaoqi,HAN Bingyu,YANG Zhongzhi. Development of Polarization Force Field for Guanine and Amino Acid Residues Systems† [J]. Chem. J. Chinese Universities, 2019, 40(2): 288. |
[12] | XU Yu,HUA Er. Hydrogen Bonding Study on Protic Ionic Liquids Composed of N-Alkyl Ethylenediaminum Cations with Trifluoroacetic Anion† [J]. Chem. J. Chinese Universities, 2018, 39(9): 1954. |
[13] | OUYANG Shunli, ZHANG Mingzhe, ZHANG Yongzhao, HU Qingcheng, WEI Haiyan, WU Nannan, HUANG Baokun. Raman Spectroscopic Investigation on the Effect of Hydrogen Bond on Molecular Structure in Ternary Aqueous Solution† [J]. Chem. J. Chinese Universities, 2018, 39(4): 758. |
[14] | HAN Bingyu, LI Yue, LIU Cui. Investigation on the Hydrogen Bonding Interaction Between Amino Acid Side Chains and Base Pairs Containing Oxidized Guanine† [J]. Chem. J. Chinese Universities, 2017, 38(6): 1068. |
[15] | SUN Jiayin, LU Ke, LIU Guangzhi, LIU Lu, PAN Wenrong, ZHANG Sijing, QIN Wei, WU Genhua. Syntheses, Crystal Structures and Luminescent Properties of Two Magnesium(Ⅱ) Supramolecular Architectures Based on Hydrogen Bonds† [J]. Chem. J. Chinese Universities, 2017, 38(5): 729. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||