Chemical Journal of Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2393-2403.doi: 10.7503/cjcu20200427
Previous Articles Next Articles
WANG Yanyan1,2, LIU Huizhen1,2(), HAN Buxing1,2(
)
Received:
2020-07-06
Online:
2020-11-10
Published:
2020-11-06
Contact:
LIU Huizhen
E-mail:liuhz@iccas.ac.cn;hanbx@iccas.ac.cn
Supported by:
CLC Number:
WANG Yanyan, LIU Huizhen, HAN Buxing. Advances in CO2 Hydrogenation to Methanol by Heterogeneous Catalysis[J]. Chemical Journal of Chinese Universities, 2020, 41(11): 2393-2403.
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cu/ZnO/ZrO2(coprecipitation | 3 | 3 | 10000 | — | 513 | 16.0 | 48.7 | ca. 0.288 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(complexation | 3 | 3 | 10000 | — | 513 | 12.5 | 51.8 | ca. 0.240 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(gel oxalate | 3 | 3 | 10000 | — | 513 | 18.0 | 51.2 | ca. 0.340 | [ |
coprecipitation method) | |||||||||
Cu?ZnO?ZrO2(surfactant | 3 | 3 | 3600 | — | 513 | 12.1 | 54.1 | 6.5% | [ |
assistedcoprecipitation) | |||||||||
CuO?ZnO?ZrO2 | 3 | 3 | — | — | 513 | 18.2 | 41.6 | 0.061 | [ |
CuO?ZnO?ZrO2?Cr2O3 | 3 | 3 | — | 9.33 | 513 | 18.1 | 40.0 | 0.058 | [ |
CuO?ZnO?ZrO2?MoO3 | 3 | 3 | — | 9.33 | 513 | 19.0 | 46.7 | 0.071 | [ |
CuO?ZnO?ZrO2?WO3 | 3 | 3 | — | 9.33 | 513 | 19.4 | 47.8 | 0.074 | [ |
CuZnZr | 3 | 3 | — | 10 | 503 | 19.6 | 44.4 | 0.073 | [ |
CuZnZrLa | 3 | 3 | — | 10 | 503 | 20.5 | 49.8 | 0.086 | [ |
CuZnZrCe | 3 | 3 | — | 10 | 503 | 22.8 | 53.0 | 0.102 | [ |
CuZnZrNd | 3 | 3 | — | 10 | 503 | 19.0 | 40.5 | 0.064 | [ |
CuZnZrPr | 3 | 3 | — | 10 | 503 | 19.3 | 42.0 | 0.070 | [ |
Cu/SiO2 | 3 | 2.5 | — | — | 503 | <10 | ca. 51.9 | ca. 0.011 | [ |
Cu2.4%(mass fraction)/Al2O3 | 3 | 2.5 | — | — | 503 | <10 | ca. 18.6 | ca. 0.008 | [ |
Cu/Zr@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 73 | 0.052 | [ |
Cu/Ti@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 85 | 0.093 | [ |
Cu/ZrO2(Ⅲ) | 3 | 8 | 3600 | — | 533 | 15.0 | 86.0 | ca. 0.206 | [ |
Cu/ZrO2(Ⅳ) | 3 | 8 | 3600 | — | 533 | 8.6 | 92.0 | ca. 0.144 | [ |
Pd/Ga2O3 | 3 | 5 | — | 1.24 | 523 | 19.6 | 51.5 | ca. 0.649 | [ |
Pd/Al2O3 | 3 | 5 | — | 1.24 | 523 | 3.4 | 29.9 | ca. 0.064 | [ |
Pd/Cr2O3 | 3 | 5 | — | 1.24 | 523 | 2.1 | 22.4 | ca. 0.030 | [ |
Pd/SiO2 | 3 | 5 | — | 1.24 | 523 | 0.05 | 100 | ca. 0.003 | [ |
Pd/TiO2 | 3 | 5 | — | 1.24 | 523 | 15.5 | 3.9 | ca. 0.040 | [ |
Pd/ZnO | 3 | 5 | — | 1.24 | 523 | 13.8 | 37.5 | ca. 0.333 | [ |
Pd/ZrO2 | 3 | 5 | — | 1.24 | 523 | 0.4 | 4.3 | ca. 0.001 | [ |
Pd/ZnO?3.93Al | 3 | 3 | — | 3.73 | 523 | 14.2 | 51.6 | ca. 0.144 | [ |
Pd/ZnO | 3 | 3 | — | 3.73 | 523 | 5.8 | 69.7 | ca. 0.080 | [ |
Pd/CNTs?in | 3 | 2 | — | — | 523 | 0.77 | 48.8 | 0.002 | [ |
Pd/CNTs?out | 3 | 2 | — | — | 523 | 0.61 | 13.4 | 0.0004 | [ |
Pd?Cu/SiO2 | 3 | 4.1 | — | 6.2 | 523 | 6.6 | 34.0 | 0.036 | [ |
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
Pd?Cu/P25 | 3 | 4.1 | — | 6.2 | 523 | 16.4 | 25.7 | 0.058 | [ |
Pd?Cu/CeO2 | 3 | 4.1 | — | 6.2 | 523 | 9.9 | 28.4 | 0.044 | [ |
Pd?Cu/ZrO2 | 3 | 4.1 | — | 6.2 | 523 | 15.8 | 26.8 | 0.060 | [ |
Pd?Cu/Al2O3 | 3 | 4.1 | — | 6.2 | 523 | 12.4 | 31.4 | 0.054 | [ |
PdZn(1∶1)/CeO2 | 3 | 2 | 2400 | — | 493 | 14.07 | 97.2 | 0.166 | [ |
Ni5Ga3/SiO2/Al2O3/Al?fiber | 3 | 0.1 | — | 7.47 | 483 | ca. 2.3 | 86.7 | 0.020 | [ |
PdZnAl | 3 | 3 | — | ca. 1.49 | 523 | 0.6 | 60.0 | 0.018 | [ |
PdMgGa | 3 | 3 | — | ca. 1.49 | 523 | 1.0 | 47.0 | 0.020 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 573 | 5.2 | 99.8 | 0.295 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.042 | [ |
In2O3 | 4 | 5 | 16000 | — | 573 | — | 100 | ca. 0.200 | [ |
In2O3 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.025 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 573 | 20 | 70 | 0.890 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 3 | ca. 95 | 0.192 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 573 | ca. 18 | ca. 70 | ca. 0.800 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 2 | ca. 92 | 0.085 | [ |
Pt/film/In2O3 | 3 | 0.1 | — | 4.67 | 303 | 37 | 62.6 | 0.355 | [ |
In∶Pd(2∶1)/SiO2 | 4 | 4 | — | 2.99 | 573 | — | 61 | 18.36c | [ |
CuIn?350 | 3 | 3 | — | 2.99 | 553 | 11.4 | 80.5 | 0.196 | [ |
1.5YIn2O3/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.6 | 69.0 | 0.420 | [ |
3La10In/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.7 | 66.0 | 0.420 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.47 | 553 | — | 78 | 1.010 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.93 | 553 | — | 75 | 0.610 | [ |
ZnO?ZrO2 | 3 | 2 | — | 0.93 | 573 | 3.4 | 87.0 | 0.248 | [ |
ZnO?ZrO2 | 3 | 5 | — | 0.93 | 593 | 10 | ca. 86 | ca. 0.737 | [ |
CdZrOx | 3 | 2 | 24000 | — | 573 | 5.4 | 80 | — | [ |
GaZrOx | 3 | 2 | 24000 | — | 573 | 2.4 | 75 | — | [ |
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cu/ZnO/ZrO2(coprecipitation | 3 | 3 | 10000 | — | 513 | 16.0 | 48.7 | ca. 0.288 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(complexation | 3 | 3 | 10000 | — | 513 | 12.5 | 51.8 | ca. 0.240 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(gel oxalate | 3 | 3 | 10000 | — | 513 | 18.0 | 51.2 | ca. 0.340 | [ |
coprecipitation method) | |||||||||
Cu?ZnO?ZrO2(surfactant | 3 | 3 | 3600 | — | 513 | 12.1 | 54.1 | 6.5% | [ |
assistedcoprecipitation) | |||||||||
CuO?ZnO?ZrO2 | 3 | 3 | — | — | 513 | 18.2 | 41.6 | 0.061 | [ |
CuO?ZnO?ZrO2?Cr2O3 | 3 | 3 | — | 9.33 | 513 | 18.1 | 40.0 | 0.058 | [ |
CuO?ZnO?ZrO2?MoO3 | 3 | 3 | — | 9.33 | 513 | 19.0 | 46.7 | 0.071 | [ |
CuO?ZnO?ZrO2?WO3 | 3 | 3 | — | 9.33 | 513 | 19.4 | 47.8 | 0.074 | [ |
CuZnZr | 3 | 3 | — | 10 | 503 | 19.6 | 44.4 | 0.073 | [ |
CuZnZrLa | 3 | 3 | — | 10 | 503 | 20.5 | 49.8 | 0.086 | [ |
CuZnZrCe | 3 | 3 | — | 10 | 503 | 22.8 | 53.0 | 0.102 | [ |
CuZnZrNd | 3 | 3 | — | 10 | 503 | 19.0 | 40.5 | 0.064 | [ |
CuZnZrPr | 3 | 3 | — | 10 | 503 | 19.3 | 42.0 | 0.070 | [ |
Cu/SiO2 | 3 | 2.5 | — | — | 503 | <10 | ca. 51.9 | ca. 0.011 | [ |
Cu2.4%(mass fraction)/Al2O3 | 3 | 2.5 | — | — | 503 | <10 | ca. 18.6 | ca. 0.008 | [ |
Cu/Zr@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 73 | 0.052 | [ |
Cu/Ti@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 85 | 0.093 | [ |
Cu/ZrO2(Ⅲ) | 3 | 8 | 3600 | — | 533 | 15.0 | 86.0 | ca. 0.206 | [ |
Cu/ZrO2(Ⅳ) | 3 | 8 | 3600 | — | 533 | 8.6 | 92.0 | ca. 0.144 | [ |
Pd/Ga2O3 | 3 | 5 | — | 1.24 | 523 | 19.6 | 51.5 | ca. 0.649 | [ |
Pd/Al2O3 | 3 | 5 | — | 1.24 | 523 | 3.4 | 29.9 | ca. 0.064 | [ |
Pd/Cr2O3 | 3 | 5 | — | 1.24 | 523 | 2.1 | 22.4 | ca. 0.030 | [ |
Pd/SiO2 | 3 | 5 | — | 1.24 | 523 | 0.05 | 100 | ca. 0.003 | [ |
Pd/TiO2 | 3 | 5 | — | 1.24 | 523 | 15.5 | 3.9 | ca. 0.040 | [ |
Pd/ZnO | 3 | 5 | — | 1.24 | 523 | 13.8 | 37.5 | ca. 0.333 | [ |
Pd/ZrO2 | 3 | 5 | — | 1.24 | 523 | 0.4 | 4.3 | ca. 0.001 | [ |
Pd/ZnO?3.93Al | 3 | 3 | — | 3.73 | 523 | 14.2 | 51.6 | ca. 0.144 | [ |
Pd/ZnO | 3 | 3 | — | 3.73 | 523 | 5.8 | 69.7 | ca. 0.080 | [ |
Pd/CNTs?in | 3 | 2 | — | — | 523 | 0.77 | 48.8 | 0.002 | [ |
Pd/CNTs?out | 3 | 2 | — | — | 523 | 0.61 | 13.4 | 0.0004 | [ |
Pd?Cu/SiO2 | 3 | 4.1 | — | 6.2 | 523 | 6.6 | 34.0 | 0.036 | [ |
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
Pd?Cu/P25 | 3 | 4.1 | — | 6.2 | 523 | 16.4 | 25.7 | 0.058 | [ |
Pd?Cu/CeO2 | 3 | 4.1 | — | 6.2 | 523 | 9.9 | 28.4 | 0.044 | [ |
Pd?Cu/ZrO2 | 3 | 4.1 | — | 6.2 | 523 | 15.8 | 26.8 | 0.060 | [ |
Pd?Cu/Al2O3 | 3 | 4.1 | — | 6.2 | 523 | 12.4 | 31.4 | 0.054 | [ |
PdZn(1∶1)/CeO2 | 3 | 2 | 2400 | — | 493 | 14.07 | 97.2 | 0.166 | [ |
Ni5Ga3/SiO2/Al2O3/Al?fiber | 3 | 0.1 | — | 7.47 | 483 | ca. 2.3 | 86.7 | 0.020 | [ |
PdZnAl | 3 | 3 | — | ca. 1.49 | 523 | 0.6 | 60.0 | 0.018 | [ |
PdMgGa | 3 | 3 | — | ca. 1.49 | 523 | 1.0 | 47.0 | 0.020 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 573 | 5.2 | 99.8 | 0.295 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.042 | [ |
In2O3 | 4 | 5 | 16000 | — | 573 | — | 100 | ca. 0.200 | [ |
In2O3 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.025 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 573 | 20 | 70 | 0.890 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 3 | ca. 95 | 0.192 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 573 | ca. 18 | ca. 70 | ca. 0.800 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 2 | ca. 92 | 0.085 | [ |
Pt/film/In2O3 | 3 | 0.1 | — | 4.67 | 303 | 37 | 62.6 | 0.355 | [ |
In∶Pd(2∶1)/SiO2 | 4 | 4 | — | 2.99 | 573 | — | 61 | 18.36c | [ |
CuIn?350 | 3 | 3 | — | 2.99 | 553 | 11.4 | 80.5 | 0.196 | [ |
1.5YIn2O3/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.6 | 69.0 | 0.420 | [ |
3La10In/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.7 | 66.0 | 0.420 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.47 | 553 | — | 78 | 1.010 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.93 | 553 | — | 75 | 0.610 | [ |
ZnO?ZrO2 | 3 | 2 | — | 0.93 | 573 | 3.4 | 87.0 | 0.248 | [ |
ZnO?ZrO2 | 3 | 5 | — | 0.93 | 593 | 10 | ca. 86 | ca. 0.737 | [ |
CdZrOx | 3 | 2 | 24000 | — | 573 | 5.4 | 80 | — | [ |
GaZrOx | 3 | 2 | 24000 | — | 573 | 2.4 | 75 | — | [ |
1 | Sanz⁃Perez E. S., Murdock C. R., Didas S. A., Jones C. W., Chem. Rev., 2016, 116(19), 11840—11876 |
2 | Ye R. P., Ding J., Gong W., Argyle M. D., Zhong Q., Wang Y., Russell C. K., Xu Z., Russell A. G., Li Q., Fan M., Yao Y. G., Nat. Commun., 2019, 10(1), 5698 |
3 | Kattel S., Liu P., Chen J. G., J. Am. Chem. Soc., 2017, 139(29), 9739—9754 |
4 | Guo L., Sun J., Ge Q., Tsubaki N., J. Mater. Chem. A, 2018, 6(46), 23244—23262 |
5 | Ma Z., Porosoff M. D., ACS Catal., 2019, 9(3), 2639—2656 |
6 | Zhou W., Cheng K., Kang J., Zhou C., Subramanian V., Zhang Q., Wang Y., Chem. Soc. Rev., 2019, 48(12), 3193—3228 |
7 | Song C., Catal. Today, 2006, 115(1), 2—32 |
8 | Jiang X., Nie X., Guo X., Song C., Chen J. G., Chem. Rev., 2020, doi: 10.1021/acs.chemrev.9b00723 |
9 | Wang W. H., Himeda Y., Muckerman J. T., Manbeck G. F., Fujita E., Chem. Rev., 2015, 115(23), 12936—12973 |
10 | Alvarez A., Bansode A., Urakawa A., Bavykina A. V., Wezendonk T. A., Makkee M., Gascon J., Kapteijn F., Chem. Rev., 2017, 117(14), 9804—9838 |
11 | Kattel S., Ramirez P. J., Chen J. G., Rodriguez J. A., Liu P., Science, 2017, 355(6331), 1296—1299 |
12 | Behrens M., Studt F., Kasatkin I., Kuhl S., Havecker M., Abildpedersen F., Zander S., Girgsdies F., Kurr P., Kniep B., Science, 2012, 336(6083), 893—897 |
13 | Karelovic A., Ruiz P., Catal. Sci. Technol., 2015, 5(2), 869—881 |
14 | Li K., Chen J. G., ACS Catal., 2019, 9(9), 7840—7861 |
15 | Bonura G., Cordaro M., Cannilla C., Arena F., Frusteri F., Appl. Catal. B: Environ., 2014, 152/153, 152—161 |
16 | Li L., Mao D., Yu J., Guo X., J. Power Sources, 2015, 279, 394—404 |
17 | Wang G., Mao D., Guo X., Yu J., Int. J. Hydrogen Energy, 2019, 44(8), 4197—4207 |
18 | Ban H., Li C., Asami K., Fujimoto K., Catal. Commun., 2014, 54, 50—54 |
19 | Lam E., Corral‐Pérez J. J., Larmier K., Noh G., Wolf P., Comas‐Vives A., Urakawa A., Copéret C., Angew. Chem. Int. Ed., 2019, 58(39), 13989—13996 |
20 | Lam E., Larmier K., Wolf P., Tada S., Safonova O. V., Copéret C., J. Am. Chem. Soc., 2018, 140(33), 10530—10535 |
21 | Noh G., Lam E., Alfke J. L., Larmier K., Searles K., Wolf P., Copéret C., ChemSusChem, 2019, 12(5), 968—972 |
22 | Samson K., Śliwa M., Socha R. P., Góra⁃Marek K., Mucha D., Rutkowska⁃Zbik D., Paul J. F., Ruggiero⁃Mikołajczyk M., Grabowski R., Słoczyński J., ACS Catal., 2014, 4(10), 3730—3741 |
23 | Fujitani T., Saito M., Kanai Y., Watanabe T., Nakamura J., Uchijima T., Appl. Catal. A: Gen., 1995, 125(2), L199—L202 |
24 | Song J., Liu S., Yang C., Wang G., Tian H., Zhao Z. J., Mu R., Gong J., Appl. Catal. B: Environ., 2020, 263, 118367 |
25 | Wang J., Lu S. M., Li J., Li C., Chem. Commun., 2015, 51(99), 17615—17618 |
26 | Jiang X., Koizumi N., Guo X., Song C., Appl. Catal. B: Environ., 2015, 170/171, 173—185 |
27 | Lin F., Jiang X., Boreriboon N., Wang Z., Song C., Cen K., Appl. Catal. A: Gen., 2019, 585, 117210 |
28 | Ojelade O. A., Zaman S. F., Daous M. A., Al⁃Zahrani A. A., Malik A. S., Driss H., Shterk G., Gascon J., Appl. Catal. A: Gen., 2019, 584, 117185 |
29 | Chen P., Zhao G., Liu Y., Lu Y., Appl. Catal. A: Gen., 2018, 562, 234—240 |
30 | Ota A., Kunkes E. L., Kasatkin I., Groppo E., Ferri D., Poceiro B., Navarro Yerga R. M., Behrens M., J. Catal., 2012, 293, 27—38 |
31 | Martin O., Martin A. J., Mondelli C., Mitchell S., Segawa T. F., Hauert R., Drouilly C., Curulla⁃Ferre D., Perez⁃Ramirez J., Angew. Chem. Int. Ed., 2016, 55(21), 6261—6265 |
32 | Rui N., Wang Z., Sun K., Ye J., Ge Q., Liu C. J., Appl. Catal. B: Environ., 2017, 218, 488—497 |
33 | Men Y. L., Liu Y., Wang Q., Luo Z. H., Shao S., Li Y. B., Pan Y. X., Chem. Eng. Sci., 2019, 200, 167—175 |
34 | Snider J. L., Streibel V., Hubert M. A., Choksi T. S., Valle E., Upham D. C., Schumann J., Duyar M. S., Gallo A., Abild⁃Pedersen F., Jaramillo T. F., ACS Catal., 2019, 9(4), 3399—3412 |
35 | Shi Z., Tan Q., Tian C., Pan Y., Sun X., Zhang J., Wu D., J. Catal., 2019, 379, 78—89 |
36 | Chou C. Y., Lobo R. F., Appl. Catal. A: Gen., 2019, 583, 117144—117153 |
37 | Frei M. S., Mondelli C., Garcia⁃Muelas R., Kley K. S., Puertolas B., Lopez N., Safonova O. V., Stewart J. A., Curulla Ferre D., Perez⁃Ramirez J., Nat. Commun., 2019, 10(1), 3377 |
38 | Wang J., Li G., Li Z., Tang C., Feng Z., An H., Liu H., Liu T., Li C., Sci. Adv., 2017,(3), e1701290 |
39 | Wang J., Tang C., Li G., Han Z., Li Z., Liu H., Cheng F., Li C., ACS Catal., 2019, 9(11), 10253—10259 |
40 | Dong X., Li F., Zhao N., Xiao F., Wang J., Tan Y., Appl. Catal. B: Environ., 2016, 191, 8—17 |
41 | Wang Y., Kattel S., Gao W., Li K., Liu P., Chen J. G., Wang H., Nat. Commun., 2019, 10(1), 1166 |
42 | Wang G., Mao D., Guo X., Yu J., Appl. Surf. Sci., 2018, 456, 403—409 |
43 | Phongamwong T., Chantaprasertporn U., Witoon T., Numpilai T., Pooarporn Y., Limphirat W., Donphai W., Dittanet P., Chareon⁃ panich M., Limtrakul J.,Chem. Eng. J.,2017, 316, 692—703 |
44 | Li M. M., Zeng Z., Liao F., Hong X., Tsang S. C., J. Catal., 2016, 343, 157—167 |
45 | Deng K., Hu B., Lu Q., Hong X., Catal. Commun., 2017, 100, 81—84 |
46 | Witoon T., Numpilai T., Phongamwong T., Donphai W., Boonyuen C., Warakulwit C., Chareonpanich M., Limtrakul J., Chem. Eng. J., 2018, 334, 1781—1791 |
47 | Kim J., Sarma B. B., Andres E., Pfander N., Concepcion P., Prieto G., ACS Catal., 2019, 9(11), 10409—10417 |
48 | Ferrah D., Haines A. R., Galhenage R. P., Bruce J. P., Babore A. D., Hunt A., Waluyo I., Hemminger J. C., ACS Catal., 2019, 9(8), 6783—6802 |
49 | Tada S., Kayamori S., Honma T., Kamei H., Nariyuki A., Kon K., Toyao T., Shimizu K., Satokawa S., ACS Catal., 2018, 8(9), 7809—7819 |
50 | Ouyang B., Tan W., Liu B., Catal. Commun., 2017, 95, 36—39 |
51 | Zhou X., Qu J., Xu F., Hu J., Foord J. S., Zeng Z., Hong X., Tsang S. C., Chem. Commun., 2013, 49(17), 1747—1749 |
52 | Oyolarivera O., Baltanas M. A., Cardonamartinez N., J. CO2 Util., 2015, 9, 8—15 |
53 | Iwasa N., Suzuki H., Terashita M., Arai M., Takezawa N., Catal. Lett., 2004, 96(1), 75—78 |
54 | Bahruji H., Bowker M., Hutchings G. J., Dimitratos N., Wells P. P., Gibson E. K., Jones W., Brookes C., Morgan D. J., Lalev G., J. Catal., 2016, 343, 133—146 |
55 | Díez⁃Ramírez J., Valverde J. L., Sánchez P., Dorado F., Catal. Lett., 2016, 146(2), 373—382 |
56 | Liao F., Wu X. P., Zheng J., Li M. M. J., Kroner A., Zeng Z., Hong X., Yuan Y., Gong X. Q., Tsang S. C. E., Green Chem., 2017, 19(1), 270—280 |
57 | Jiang X., Jiao Y., Moran C., Nie X., Gong Y., Guo X., Walton K. S., Song C., Catal. Commun., 2019, 118, 10—14 |
58 | Choi E. J., Lee Y. H., Lee D. W., Moon D. J., Lee K. Y., Mol. Catal., 2017, 434, 146—153 |
59 | Malik A. S., Zaman S. F., Alzahrani A. A., Daous M. A., Driss H., Petrov L. A., Appl. Catal. A: Gen., 2018, 560, 42—53 |
60 | Díez⁃Ramírez J., Díaz J. A., Sánchez P., Dorado F., J. CO2 Util., 2017, 22, 71—80 |
61 | Studt F., Sharafutdinov I., Abild⁃Pedersen F., Elkjaer C. F., Hummelshoj J. S., Dahl S., Chorkendorff I., Nørskov J. K., Nat. Chem.,2014, 6(4), 320—324 |
62 | Tang Q., Ji W., Russell C. K., Cheng Z., Zhang Y., Fan M., Shen Z., Appl. Energ.,2019, 253, 113623 |
63 | Ahmad K., Upadhyayula S.,Sustain. Energ. Fuels, 2019, 3(9), 2509—2520 |
64 | Tang Q., Shen Z., Huang L., He T., Adidharma H., Russell A. G., Fan M., Phys. Chem. Chem. Phys., 2017, 19(28), 18539—18555 |
65 | Collins S. E., Delgado J. J., Mira C., Calvino J. J., Bernal S., Chiavassa D. L., Baltanás M. A., Bonivardi A. L., J. Catal., 2012, 292, 90—98 |
66 | Fiordaliso E. M., Sharafutdinov I., Carvalho H. W. P., Grunwaldt J. D., Hansen T. W., Chorkendorff I., Wagner J. B., Damsgaard C. D., ACS Catal., 2015, 5(10), 5827—5836 |
67 | Singh J. A., Cao A., Schumann J., Wang T., Nørskov J. K., Abild⁃Pedersen F., Bent S. F., Catal. Lett., 2018, 148(12), 3583—3591 |
68 | Frei M. S., Capdevila⁃Cortada M., García⁃Muelas R., Mondelli C., López N., Stewart J. A., Curulla Ferré D., Pérez⁃Ramírez J., J. Catal., 2018, 361, 313—321 |
69 | Tsoukalou A., Abdala P. M., Stoian D., Huang X., Willinger M. G., Fedorov A., Muller C. R., J. Am. Chem. Soc., 2019, 141(34), 13497—13505 |
70 | Frei M. S., Mondelli C., Cesarini A., Krumeich F., Hauert R., Stewart J. A., Curulla Ferré D., Pérez⁃Ramírez J., ACS Catal., 2019, 10(2), 1133—1145 |
71 | Chen T. Y., Cao C., Chen T. B., Ding X., Huang H., Shen L., Cao X., Zhu M., Xu J., Gao J., Han Y. F., ACS Catal., 2019, 9(9), 8785—8797 |
72 | Ye J., Liu C. J., Mei D., Ge Q., J. Catal., 2014, 317, 44—53 |
73 | Ye J., Ge Q., Liu C. J., Chem. Eng. Sci., 2015, 135, 193—201 |
[1] | GUO Shujia, WANG Sen, ZHANG Li, QIN Zhangfeng, WANG Pengfei, DONG Mei, WANG Jianguo, FAN Weibin. Regulating the Acid Sites Distribution in ZSM-5 Zeolite and Its Catalytic Performance in the Conversion of Methanol to Olefins [J]. Chemical Journal of Chinese Universities, 2021, 42(Album-1): 1-12. |
[2] | ZHANG Guoqiang, SUN Yuchen, SHI Yabo, ZHENG Huayan, LI Zhong, SHANGGUAN Ju, LIU Shoujun, SHI Pengzheng. Surface Properties of Ce1-xMnxO2 Catalyst on the Catalytic Activities for Direct Synthesis of DMC from CO2 and Methanol [J]. Chemical Journal of Chinese Universities, 2020, 41(9): 2061-2069. |
[3] | LI Li, LI Pengfei, WANG Bo. Photocatalytic Application of Covalent Organic Frameworks [J]. Chemical Journal of Chinese Universities, 2020, 41(9): 1917-1932. |
[4] | LIU Hengshuo,YU Zhiquan,SUN Zhichao,WANG Yao,LIU Yingya,WANG Anjie. Copper Salt Anchored on a Covalent Organic Framework as Heterogeneous Catalyst for Chan-Lam Coupling Reaction [J]. Chemical Journal of Chinese Universities, 2020, 41(5): 1091-1100. |
[5] | CHEN Danyi, ZHANG Fumei, HE Dan, ZHANG Zimei, ZHONG Fen, WEN Simiaomiao, LIU Qixing, ZHOU Haifeng. Synthesis of Chiral Phenylbenzothiazole Methanol via Transfer Hydrogenation Catalyzed by Ruthenium Complexes† [J]. Chemical Journal of Chinese Universities, 2020, 41(10): 2264-2271. |
[6] | FAN Hui, JIN Baokang. Investigation on Electrochemical Capture of CO2 by Quinone Derivatives Based on in situ FTIR Spectroelectrochemistry † [J]. Chemical Journal of Chinese Universities, 2019, 40(9): 1847-1856. |
[7] | ZHANG Lin, ZHANG Wei, YUE Xin, LI Pengjie, YANG Zuoyin, PU Min, LEI Ming. Theoretical Study on Mechanism of CO2 Hydrogenation to Formic Acid Catalyzed by Manganese Complex † [J]. Chemical Journal of Chinese Universities, 2019, 40(9): 1911-1917. |
[8] | YIN Jiao, ZHANG Guoqiang, YAN Lifei, JIA Dongsen, ZHENG Huayan, LI Zhong. Influence of Structure Evolution of CuY Catalyst During the Reaction Process on Its Catalytic Performance for Oxidative Carbonylation of Methanol† [J]. Chemical Journal of Chinese Universities, 2019, 40(7): 1510-1519. |
[9] | DING Zhongxie,LIANG Jinhua,LIU Zhen,SHEN Jiecan,ZHANG Feng,REN Xiaoqian,JIANG Min. Functional Specific Heteropoly Acid Ionic Liquid Catalyzed Direct Esterification of Aqueous Succinate Solution† [J]. Chemical Journal of Chinese Universities, 2019, 40(5): 1029-1036. |
[10] | SHI Yue,MAO Qing,XIAO Cheng,JING Weiyun,ZHANG Xueyuan. Nonlinear Spectroscopy Analysis for Electrocatalytic Oxidation of Methanol on PtRu/C Surface† [J]. Chemical Journal of Chinese Universities, 2018, 39(9): 2017-2024. |
[11] | LIU Qi,GUO Guibao,AN Shengli,LIU Jinyan. Preparation and Properties of Tetramethyl Ammonium Hydroxide Modified Polyvinylidene Fluoride with Styrene Sulfonated Membranes† [J]. Chemical Journal of Chinese Universities, 2018, 39(9): 2062-2070. |
[12] | ZHU Xingye,QIAN Huidong,JIANG Jingjing,YUE Zhouying,XU Jianfeng,ZOU Zhiqing,YANG Hui. Cross-linking of Imidazole-grafted Sulfonated Poly(ether ether ketone) as Proton Exchange Membranes for Direct Methanol Fuel Cells† [J]. Chemical Journal of Chinese Universities, 2018, 39(9): 2046-2053. |
[13] | WANG Meilin, LIU Yudong, LIU Xiaoli, LI Zhiying, LIU Fengqi. Nonisothermal Crystallization Kinetics of ABS/PET/PETG Alloy† [J]. Chemical Journal of Chinese Universities, 2018, 39(6): 1290-1296. |
[14] | LI Jianwei,LI Xiang,ZHANG Jie,LEI Zhigang. Mechanism of the Interaction Between Ionic Liquid [Bmim][DBP] and Methanol for Seperation of Mixed C4/Methanol† [J]. Chemical Journal of Chinese Universities, 2018, 39(5): 983-989. |
[15] | HU Xueyan,WANG Na,HAO Yuting,XU Zhiqing,WANG Minghui,SHI Gaiqin,YANG Huimin,LIANG Zhenhai. Preparation of Cu Doped SnO2 Cathode Material for Electroreduction of Carbon Dioxide at Low Overpotential† [J]. Chemical Journal of Chinese Universities, 2018, 39(10): 2265-2271. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||