Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2393.doi: 10.7503/cjcu20200427
Previous Articles Next Articles
WANG Yanyan1,2, LIU Huizhen1,2(), HAN Buxing1,2()
Received:
2020-07-06
Online:
2020-11-10
Published:
2020-11-06
Contact:
LIU Huizhen
E-mail:liuhz@iccas.ac.cn;hanbx@iccas.ac.cn
Supported by:
CLC Number:
TrendMD:
WANG Yanyan, LIU Huizhen, HAN Buxing. Advances in CO2 Hydrogenation to Methanol by Heterogeneous Catalysis[J]. Chem. J. Chinese Universities, 2020, 41(11): 2393.
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cu/ZnO/ZrO2(coprecipitation | 3 | 3 | 10000 | — | 513 | 16.0 | 48.7 | ca. 0.288 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(complexation | 3 | 3 | 10000 | — | 513 | 12.5 | 51.8 | ca. 0.240 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(gel oxalate | 3 | 3 | 10000 | — | 513 | 18.0 | 51.2 | ca. 0.340 | [ |
coprecipitation method) | |||||||||
Cu?ZnO?ZrO2(surfactant | 3 | 3 | 3600 | — | 513 | 12.1 | 54.1 | 6.5% | [ |
assistedcoprecipitation) | |||||||||
CuO?ZnO?ZrO2 | 3 | 3 | — | — | 513 | 18.2 | 41.6 | 0.061 | [ |
CuO?ZnO?ZrO2?Cr2O3 | 3 | 3 | — | 9.33 | 513 | 18.1 | 40.0 | 0.058 | [ |
CuO?ZnO?ZrO2?MoO3 | 3 | 3 | — | 9.33 | 513 | 19.0 | 46.7 | 0.071 | [ |
CuO?ZnO?ZrO2?WO3 | 3 | 3 | — | 9.33 | 513 | 19.4 | 47.8 | 0.074 | [ |
CuZnZr | 3 | 3 | — | 10 | 503 | 19.6 | 44.4 | 0.073 | [ |
CuZnZrLa | 3 | 3 | — | 10 | 503 | 20.5 | 49.8 | 0.086 | [ |
CuZnZrCe | 3 | 3 | — | 10 | 503 | 22.8 | 53.0 | 0.102 | [ |
CuZnZrNd | 3 | 3 | — | 10 | 503 | 19.0 | 40.5 | 0.064 | [ |
CuZnZrPr | 3 | 3 | — | 10 | 503 | 19.3 | 42.0 | 0.070 | [ |
Cu/SiO2 | 3 | 2.5 | — | — | 503 | <10 | ca. 51.9 | ca. 0.011 | [ |
Cu2.4%(mass fraction)/Al2O3 | 3 | 2.5 | — | — | 503 | <10 | ca. 18.6 | ca. 0.008 | [ |
Cu/Zr@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 73 | 0.052 | [ |
Cu/Ti@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 85 | 0.093 | [ |
Cu/ZrO2(Ⅲ) | 3 | 8 | 3600 | — | 533 | 15.0 | 86.0 | ca. 0.206 | [ |
Cu/ZrO2(Ⅳ) | 3 | 8 | 3600 | — | 533 | 8.6 | 92.0 | ca. 0.144 | [ |
Pd/Ga2O3 | 3 | 5 | — | 1.24 | 523 | 19.6 | 51.5 | ca. 0.649 | [ |
Pd/Al2O3 | 3 | 5 | — | 1.24 | 523 | 3.4 | 29.9 | ca. 0.064 | [ |
Pd/Cr2O3 | 3 | 5 | — | 1.24 | 523 | 2.1 | 22.4 | ca. 0.030 | [ |
Pd/SiO2 | 3 | 5 | — | 1.24 | 523 | 0.05 | 100 | ca. 0.003 | [ |
Pd/TiO2 | 3 | 5 | — | 1.24 | 523 | 15.5 | 3.9 | ca. 0.040 | [ |
Pd/ZnO | 3 | 5 | — | 1.24 | 523 | 13.8 | 37.5 | ca. 0.333 | [ |
Pd/ZrO2 | 3 | 5 | — | 1.24 | 523 | 0.4 | 4.3 | ca. 0.001 | [ |
Pd/ZnO?3.93Al | 3 | 3 | — | 3.73 | 523 | 14.2 | 51.6 | ca. 0.144 | [ |
Pd/ZnO | 3 | 3 | — | 3.73 | 523 | 5.8 | 69.7 | ca. 0.080 | [ |
Pd/CNTs?in | 3 | 2 | — | — | 523 | 0.77 | 48.8 | 0.002 | [ |
Pd/CNTs?out | 3 | 2 | — | — | 523 | 0.61 | 13.4 | 0.0004 | [ |
Pd?Cu/SiO2 | 3 | 4.1 | — | 6.2 | 523 | 6.6 | 34.0 | 0.036 | [ |
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
Pd?Cu/P25 | 3 | 4.1 | — | 6.2 | 523 | 16.4 | 25.7 | 0.058 | [ |
Pd?Cu/CeO2 | 3 | 4.1 | — | 6.2 | 523 | 9.9 | 28.4 | 0.044 | [ |
Pd?Cu/ZrO2 | 3 | 4.1 | — | 6.2 | 523 | 15.8 | 26.8 | 0.060 | [ |
Pd?Cu/Al2O3 | 3 | 4.1 | — | 6.2 | 523 | 12.4 | 31.4 | 0.054 | [ |
PdZn(1∶1)/CeO2 | 3 | 2 | 2400 | — | 493 | 14.07 | 97.2 | 0.166 | [ |
Ni5Ga3/SiO2/Al2O3/Al?fiber | 3 | 0.1 | — | 7.47 | 483 | ca. 2.3 | 86.7 | 0.020 | [ |
PdZnAl | 3 | 3 | — | ca. 1.49 | 523 | 0.6 | 60.0 | 0.018 | [ |
PdMgGa | 3 | 3 | — | ca. 1.49 | 523 | 1.0 | 47.0 | 0.020 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 573 | 5.2 | 99.8 | 0.295 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.042 | [ |
In2O3 | 4 | 5 | 16000 | — | 573 | — | 100 | ca. 0.200 | [ |
In2O3 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.025 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 573 | 20 | 70 | 0.890 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 3 | ca. 95 | 0.192 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 573 | ca. 18 | ca. 70 | ca. 0.800 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 2 | ca. 92 | 0.085 | [ |
Pt/film/In2O3 | 3 | 0.1 | — | 4.67 | 303 | 37 | 62.6 | 0.355 | [ |
In∶Pd(2∶1)/SiO2 | 4 | 4 | — | 2.99 | 573 | — | 61 | 18.36c | [ |
CuIn?350 | 3 | 3 | — | 2.99 | 553 | 11.4 | 80.5 | 0.196 | [ |
1.5YIn2O3/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.6 | 69.0 | 0.420 | [ |
3La10In/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.7 | 66.0 | 0.420 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.47 | 553 | — | 78 | 1.010 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.93 | 553 | — | 75 | 0.610 | [ |
ZnO?ZrO2 | 3 | 2 | — | 0.93 | 573 | 3.4 | 87.0 | 0.248 | [ |
ZnO?ZrO2 | 3 | 5 | — | 0.93 | 593 | 10 | ca. 86 | ca. 0.737 | [ |
CdZrOx | 3 | 2 | 24000 | — | 573 | 5.4 | 80 | — | [ |
GaZrOx | 3 | 2 | 24000 | — | 573 | 2.4 | 75 | — | [ |
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
---|---|---|---|---|---|---|---|---|---|
Cu/ZnO/ZrO2(coprecipitation | 3 | 3 | 10000 | — | 513 | 16.0 | 48.7 | ca. 0.288 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(complexation | 3 | 3 | 10000 | — | 513 | 12.5 | 51.8 | ca. 0.240 | [ |
method) | |||||||||
Cu/ZnO/ZrO2(gel oxalate | 3 | 3 | 10000 | — | 513 | 18.0 | 51.2 | ca. 0.340 | [ |
coprecipitation method) | |||||||||
Cu?ZnO?ZrO2(surfactant | 3 | 3 | 3600 | — | 513 | 12.1 | 54.1 | 6.5% | [ |
assistedcoprecipitation) | |||||||||
CuO?ZnO?ZrO2 | 3 | 3 | — | — | 513 | 18.2 | 41.6 | 0.061 | [ |
CuO?ZnO?ZrO2?Cr2O3 | 3 | 3 | — | 9.33 | 513 | 18.1 | 40.0 | 0.058 | [ |
CuO?ZnO?ZrO2?MoO3 | 3 | 3 | — | 9.33 | 513 | 19.0 | 46.7 | 0.071 | [ |
CuO?ZnO?ZrO2?WO3 | 3 | 3 | — | 9.33 | 513 | 19.4 | 47.8 | 0.074 | [ |
CuZnZr | 3 | 3 | — | 10 | 503 | 19.6 | 44.4 | 0.073 | [ |
CuZnZrLa | 3 | 3 | — | 10 | 503 | 20.5 | 49.8 | 0.086 | [ |
CuZnZrCe | 3 | 3 | — | 10 | 503 | 22.8 | 53.0 | 0.102 | [ |
CuZnZrNd | 3 | 3 | — | 10 | 503 | 19.0 | 40.5 | 0.064 | [ |
CuZnZrPr | 3 | 3 | — | 10 | 503 | 19.3 | 42.0 | 0.070 | [ |
Cu/SiO2 | 3 | 2.5 | — | — | 503 | <10 | ca. 51.9 | ca. 0.011 | [ |
Cu2.4%(mass fraction)/Al2O3 | 3 | 2.5 | — | — | 503 | <10 | ca. 18.6 | ca. 0.008 | [ |
Cu/Zr@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 73 | 0.052 | [ |
Cu/Ti@SiO2 | 3 | 2.5 | — | — | 503 | <10 | 85 | 0.093 | [ |
Cu/ZrO2(Ⅲ) | 3 | 8 | 3600 | — | 533 | 15.0 | 86.0 | ca. 0.206 | [ |
Cu/ZrO2(Ⅳ) | 3 | 8 | 3600 | — | 533 | 8.6 | 92.0 | ca. 0.144 | [ |
Pd/Ga2O3 | 3 | 5 | — | 1.24 | 523 | 19.6 | 51.5 | ca. 0.649 | [ |
Pd/Al2O3 | 3 | 5 | — | 1.24 | 523 | 3.4 | 29.9 | ca. 0.064 | [ |
Pd/Cr2O3 | 3 | 5 | — | 1.24 | 523 | 2.1 | 22.4 | ca. 0.030 | [ |
Pd/SiO2 | 3 | 5 | — | 1.24 | 523 | 0.05 | 100 | ca. 0.003 | [ |
Pd/TiO2 | 3 | 5 | — | 1.24 | 523 | 15.5 | 3.9 | ca. 0.040 | [ |
Pd/ZnO | 3 | 5 | — | 1.24 | 523 | 13.8 | 37.5 | ca. 0.333 | [ |
Pd/ZrO2 | 3 | 5 | — | 1.24 | 523 | 0.4 | 4.3 | ca. 0.001 | [ |
Pd/ZnO?3.93Al | 3 | 3 | — | 3.73 | 523 | 14.2 | 51.6 | ca. 0.144 | [ |
Pd/ZnO | 3 | 3 | — | 3.73 | 523 | 5.8 | 69.7 | ca. 0.080 | [ |
Pd/CNTs?in | 3 | 2 | — | — | 523 | 0.77 | 48.8 | 0.002 | [ |
Pd/CNTs?out | 3 | 2 | — | — | 523 | 0.61 | 13.4 | 0.0004 | [ |
Pd?Cu/SiO2 | 3 | 4.1 | — | 6.2 | 523 | 6.6 | 34.0 | 0.036 | [ |
Catalyst | p(H2)/p(CO2) | p/MPa | GHSVa/h-1 | (W/F)b/ (gcat·h·mol-1) | T/K | CO2 conv.(%) | SCH3OH (%) | YCH3OH/ (gCH3OH·g | Ref. |
Pd?Cu/P25 | 3 | 4.1 | — | 6.2 | 523 | 16.4 | 25.7 | 0.058 | [ |
Pd?Cu/CeO2 | 3 | 4.1 | — | 6.2 | 523 | 9.9 | 28.4 | 0.044 | [ |
Pd?Cu/ZrO2 | 3 | 4.1 | — | 6.2 | 523 | 15.8 | 26.8 | 0.060 | [ |
Pd?Cu/Al2O3 | 3 | 4.1 | — | 6.2 | 523 | 12.4 | 31.4 | 0.054 | [ |
PdZn(1∶1)/CeO2 | 3 | 2 | 2400 | — | 493 | 14.07 | 97.2 | 0.166 | [ |
Ni5Ga3/SiO2/Al2O3/Al?fiber | 3 | 0.1 | — | 7.47 | 483 | ca. 2.3 | 86.7 | 0.020 | [ |
PdZnAl | 3 | 3 | — | ca. 1.49 | 523 | 0.6 | 60.0 | 0.018 | [ |
PdMgGa | 3 | 3 | — | ca. 1.49 | 523 | 1.0 | 47.0 | 0.020 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 573 | 5.2 | 99.8 | 0.295 | [ |
In2O3/ZrO2 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.042 | [ |
In2O3 | 4 | 5 | 16000 | — | 573 | — | 100 | ca. 0.200 | [ |
In2O3 | 4 | 5 | 16000 | — | 503 | — | 100 | ca. 0.025 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 573 | 20 | 70 | 0.890 | [ |
Pd?P/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 3 | ca. 95 | 0.192 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 573 | ca. 18 | ca. 70 | ca. 0.800 | [ |
Pd?I/In2O3 | 4 | 5 | — | 1.1 | 498 | ca. 2 | ca. 92 | 0.085 | [ |
Pt/film/In2O3 | 3 | 0.1 | — | 4.67 | 303 | 37 | 62.6 | 0.355 | [ |
In∶Pd(2∶1)/SiO2 | 4 | 4 | — | 2.99 | 573 | — | 61 | 18.36c | [ |
CuIn?350 | 3 | 3 | — | 2.99 | 553 | 11.4 | 80.5 | 0.196 | [ |
1.5YIn2O3/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.6 | 69.0 | 0.420 | [ |
3La10In/ZrO2 | 4 | 4 | — | 0.43 | 573 | 7.7 | 66.0 | 0.420 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.47 | 553 | — | 78 | 1.010 | [ |
Pd?In2O3 CP | 4 | 5 | — | 0.93 | 553 | — | 75 | 0.610 | [ |
ZnO?ZrO2 | 3 | 2 | — | 0.93 | 573 | 3.4 | 87.0 | 0.248 | [ |
ZnO?ZrO2 | 3 | 5 | — | 0.93 | 593 | 10 | ca. 86 | ca. 0.737 | [ |
CdZrOx | 3 | 2 | 24000 | — | 573 | 5.4 | 80 | — | [ |
GaZrOx | 3 | 2 | 24000 | — | 573 | 2.4 | 75 | — | [ |
1 | Sanz⁃Perez E. S., Murdock C. R., Didas S. A., Jones C. W., Chem. Rev., 2016, 116(19), 11840—11876 |
2 | Ye R. P., Ding J., Gong W., Argyle M. D., Zhong Q., Wang Y., Russell C. K., Xu Z., Russell A. G., Li Q., Fan M., Yao Y. G., Nat. Commun., 2019, 10(1), 5698 |
3 | Kattel S., Liu P., Chen J. G., J. Am. Chem. Soc., 2017, 139(29), 9739—9754 |
4 | Guo L., Sun J., Ge Q., Tsubaki N., J. Mater. Chem. A, 2018, 6(46), 23244—23262 |
5 | Ma Z., Porosoff M. D., ACS Catal., 2019, 9(3), 2639—2656 |
6 | Zhou W., Cheng K., Kang J., Zhou C., Subramanian V., Zhang Q., Wang Y., Chem. Soc. Rev., 2019, 48(12), 3193—3228 |
7 | Song C., Catal. Today, 2006, 115(1), 2—32 |
8 | Jiang X., Nie X., Guo X., Song C., Chen J. G., Chem. Rev., 2020, doi: 10.1021/acs.chemrev.9b00723 |
9 | Wang W. H., Himeda Y., Muckerman J. T., Manbeck G. F., Fujita E., Chem. Rev., 2015, 115(23), 12936—12973 |
10 | Alvarez A., Bansode A., Urakawa A., Bavykina A. V., Wezendonk T. A., Makkee M., Gascon J., Kapteijn F., Chem. Rev., 2017, 117(14), 9804—9838 |
11 | Kattel S., Ramirez P. J., Chen J. G., Rodriguez J. A., Liu P., Science, 2017, 355(6331), 1296—1299 |
12 | Behrens M., Studt F., Kasatkin I., Kuhl S., Havecker M., Abildpedersen F., Zander S., Girgsdies F., Kurr P., Kniep B., Science, 2012, 336(6083), 893—897 |
13 | Karelovic A., Ruiz P., Catal. Sci. Technol., 2015, 5(2), 869—881 |
14 | Li K., Chen J. G., ACS Catal., 2019, 9(9), 7840—7861 |
15 | Bonura G., Cordaro M., Cannilla C., Arena F., Frusteri F., Appl. Catal. B: Environ., 2014, 152/153, 152—161 |
16 | Li L., Mao D., Yu J., Guo X., J. Power Sources, 2015, 279, 394—404 |
17 | Wang G., Mao D., Guo X., Yu J., Int. J. Hydrogen Energy, 2019, 44(8), 4197—4207 |
18 | Ban H., Li C., Asami K., Fujimoto K., Catal. Commun., 2014, 54, 50—54 |
19 | Lam E., Corral‐Pérez J. J., Larmier K., Noh G., Wolf P., Comas‐Vives A., Urakawa A., Copéret C., Angew. Chem. Int. Ed., 2019, 58(39), 13989—13996 |
20 | Lam E., Larmier K., Wolf P., Tada S., Safonova O. V., Copéret C., J. Am. Chem. Soc., 2018, 140(33), 10530—10535 |
21 | Noh G., Lam E., Alfke J. L., Larmier K., Searles K., Wolf P., Copéret C., ChemSusChem, 2019, 12(5), 968—972 |
22 | Samson K., Śliwa M., Socha R. P., Góra⁃Marek K., Mucha D., Rutkowska⁃Zbik D., Paul J. F., Ruggiero⁃Mikołajczyk M., Grabowski R., Słoczyński J., ACS Catal., 2014, 4(10), 3730—3741 |
23 | Fujitani T., Saito M., Kanai Y., Watanabe T., Nakamura J., Uchijima T., Appl. Catal. A: Gen., 1995, 125(2), L199—L202 |
24 | Song J., Liu S., Yang C., Wang G., Tian H., Zhao Z. J., Mu R., Gong J., Appl. Catal. B: Environ., 2020, 263, 118367 |
25 | Wang J., Lu S. M., Li J., Li C., Chem. Commun., 2015, 51(99), 17615—17618 |
26 | Jiang X., Koizumi N., Guo X., Song C., Appl. Catal. B: Environ., 2015, 170/171, 173—185 |
27 | Lin F., Jiang X., Boreriboon N., Wang Z., Song C., Cen K., Appl. Catal. A: Gen., 2019, 585, 117210 |
28 | Ojelade O. A., Zaman S. F., Daous M. A., Al⁃Zahrani A. A., Malik A. S., Driss H., Shterk G., Gascon J., Appl. Catal. A: Gen., 2019, 584, 117185 |
29 | Chen P., Zhao G., Liu Y., Lu Y., Appl. Catal. A: Gen., 2018, 562, 234—240 |
30 | Ota A., Kunkes E. L., Kasatkin I., Groppo E., Ferri D., Poceiro B., Navarro Yerga R. M., Behrens M., J. Catal., 2012, 293, 27—38 |
31 | Martin O., Martin A. J., Mondelli C., Mitchell S., Segawa T. F., Hauert R., Drouilly C., Curulla⁃Ferre D., Perez⁃Ramirez J., Angew. Chem. Int. Ed., 2016, 55(21), 6261—6265 |
32 | Rui N., Wang Z., Sun K., Ye J., Ge Q., Liu C. J., Appl. Catal. B: Environ., 2017, 218, 488—497 |
33 | Men Y. L., Liu Y., Wang Q., Luo Z. H., Shao S., Li Y. B., Pan Y. X., Chem. Eng. Sci., 2019, 200, 167—175 |
34 | Snider J. L., Streibel V., Hubert M. A., Choksi T. S., Valle E., Upham D. C., Schumann J., Duyar M. S., Gallo A., Abild⁃Pedersen F., Jaramillo T. F., ACS Catal., 2019, 9(4), 3399—3412 |
35 | Shi Z., Tan Q., Tian C., Pan Y., Sun X., Zhang J., Wu D., J. Catal., 2019, 379, 78—89 |
36 | Chou C. Y., Lobo R. F., Appl. Catal. A: Gen., 2019, 583, 117144—117153 |
37 | Frei M. S., Mondelli C., Garcia⁃Muelas R., Kley K. S., Puertolas B., Lopez N., Safonova O. V., Stewart J. A., Curulla Ferre D., Perez⁃Ramirez J., Nat. Commun., 2019, 10(1), 3377 |
38 | Wang J., Li G., Li Z., Tang C., Feng Z., An H., Liu H., Liu T., Li C., Sci. Adv., 2017,(3), e1701290 |
39 | Wang J., Tang C., Li G., Han Z., Li Z., Liu H., Cheng F., Li C., ACS Catal., 2019, 9(11), 10253—10259 |
40 | Dong X., Li F., Zhao N., Xiao F., Wang J., Tan Y., Appl. Catal. B: Environ., 2016, 191, 8—17 |
41 | Wang Y., Kattel S., Gao W., Li K., Liu P., Chen J. G., Wang H., Nat. Commun., 2019, 10(1), 1166 |
42 | Wang G., Mao D., Guo X., Yu J., Appl. Surf. Sci., 2018, 456, 403—409 |
43 | Phongamwong T., Chantaprasertporn U., Witoon T., Numpilai T., Pooarporn Y., Limphirat W., Donphai W., Dittanet P., Chareon⁃ panich M., Limtrakul J.,Chem. Eng. J.,2017, 316, 692—703 |
44 | Li M. M., Zeng Z., Liao F., Hong X., Tsang S. C., J. Catal., 2016, 343, 157—167 |
45 | Deng K., Hu B., Lu Q., Hong X., Catal. Commun., 2017, 100, 81—84 |
46 | Witoon T., Numpilai T., Phongamwong T., Donphai W., Boonyuen C., Warakulwit C., Chareonpanich M., Limtrakul J., Chem. Eng. J., 2018, 334, 1781—1791 |
47 | Kim J., Sarma B. B., Andres E., Pfander N., Concepcion P., Prieto G., ACS Catal., 2019, 9(11), 10409—10417 |
48 | Ferrah D., Haines A. R., Galhenage R. P., Bruce J. P., Babore A. D., Hunt A., Waluyo I., Hemminger J. C., ACS Catal., 2019, 9(8), 6783—6802 |
49 | Tada S., Kayamori S., Honma T., Kamei H., Nariyuki A., Kon K., Toyao T., Shimizu K., Satokawa S., ACS Catal., 2018, 8(9), 7809—7819 |
50 | Ouyang B., Tan W., Liu B., Catal. Commun., 2017, 95, 36—39 |
51 | Zhou X., Qu J., Xu F., Hu J., Foord J. S., Zeng Z., Hong X., Tsang S. C., Chem. Commun., 2013, 49(17), 1747—1749 |
52 | Oyolarivera O., Baltanas M. A., Cardonamartinez N., J. CO2 Util., 2015, 9, 8—15 |
53 | Iwasa N., Suzuki H., Terashita M., Arai M., Takezawa N., Catal. Lett., 2004, 96(1), 75—78 |
54 | Bahruji H., Bowker M., Hutchings G. J., Dimitratos N., Wells P. P., Gibson E. K., Jones W., Brookes C., Morgan D. J., Lalev G., J. Catal., 2016, 343, 133—146 |
55 | Díez⁃Ramírez J., Valverde J. L., Sánchez P., Dorado F., Catal. Lett., 2016, 146(2), 373—382 |
56 | Liao F., Wu X. P., Zheng J., Li M. M. J., Kroner A., Zeng Z., Hong X., Yuan Y., Gong X. Q., Tsang S. C. E., Green Chem., 2017, 19(1), 270—280 |
57 | Jiang X., Jiao Y., Moran C., Nie X., Gong Y., Guo X., Walton K. S., Song C., Catal. Commun., 2019, 118, 10—14 |
58 | Choi E. J., Lee Y. H., Lee D. W., Moon D. J., Lee K. Y., Mol. Catal., 2017, 434, 146—153 |
59 | Malik A. S., Zaman S. F., Alzahrani A. A., Daous M. A., Driss H., Petrov L. A., Appl. Catal. A: Gen., 2018, 560, 42—53 |
60 | Díez⁃Ramírez J., Díaz J. A., Sánchez P., Dorado F., J. CO2 Util., 2017, 22, 71—80 |
61 | Studt F., Sharafutdinov I., Abild⁃Pedersen F., Elkjaer C. F., Hummelshoj J. S., Dahl S., Chorkendorff I., Nørskov J. K., Nat. Chem.,2014, 6(4), 320—324 |
62 | Tang Q., Ji W., Russell C. K., Cheng Z., Zhang Y., Fan M., Shen Z., Appl. Energ.,2019, 253, 113623 |
63 | Ahmad K., Upadhyayula S.,Sustain. Energ. Fuels, 2019, 3(9), 2509—2520 |
64 | Tang Q., Shen Z., Huang L., He T., Adidharma H., Russell A. G., Fan M., Phys. Chem. Chem. Phys., 2017, 19(28), 18539—18555 |
65 | Collins S. E., Delgado J. J., Mira C., Calvino J. J., Bernal S., Chiavassa D. L., Baltanás M. A., Bonivardi A. L., J. Catal., 2012, 292, 90—98 |
66 | Fiordaliso E. M., Sharafutdinov I., Carvalho H. W. P., Grunwaldt J. D., Hansen T. W., Chorkendorff I., Wagner J. B., Damsgaard C. D., ACS Catal., 2015, 5(10), 5827—5836 |
67 | Singh J. A., Cao A., Schumann J., Wang T., Nørskov J. K., Abild⁃Pedersen F., Bent S. F., Catal. Lett., 2018, 148(12), 3583—3591 |
68 | Frei M. S., Capdevila⁃Cortada M., García⁃Muelas R., Mondelli C., López N., Stewart J. A., Curulla Ferré D., Pérez⁃Ramírez J., J. Catal., 2018, 361, 313—321 |
69 | Tsoukalou A., Abdala P. M., Stoian D., Huang X., Willinger M. G., Fedorov A., Muller C. R., J. Am. Chem. Soc., 2019, 141(34), 13497—13505 |
70 | Frei M. S., Mondelli C., Cesarini A., Krumeich F., Hauert R., Stewart J. A., Curulla Ferré D., Pérez⁃Ramírez J., ACS Catal., 2019, 10(2), 1133—1145 |
71 | Chen T. Y., Cao C., Chen T. B., Ding X., Huang H., Shen L., Cao X., Zhu M., Xu J., Gao J., Han Y. F., ACS Catal., 2019, 9(9), 8785—8797 |
72 | Ye J., Liu C. J., Mei D., Ge Q., J. Catal., 2014, 317, 44—53 |
73 | Ye J., Ge Q., Liu C. J., Chem. Eng. Sci., 2015, 135, 193—201 |
[1] | WU Yu, LI Xuan, YANG Hengpan, HE Chuanxin. Construction of Cobalt Single Atoms via Double-confinement Strategy for High-performance Electrocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220343. |
[2] | CUI Wei, ZHAO Deyin, BAI Wenxuan, ZHANG Xiaodong, YU Jiang. CO2 Absorption in Composite of Aprotic Solvent and Iron-based Ionic Liquid [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220120. |
[3] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[4] | HUANG Xiaoshun, MA Haiying, LIU Shujuan, WANG Bin, WANG Hongli, QIAN Bo, CUI Xinjiang, SHI Feng. Recent Advances on Indirect Conversion of Carbon Dioxide to Chemicals [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220222. |
[5] | SONG Dewen, WANG Mingwang, WANG Yani, JIAO Zhenmei, NING Hui, WU Mingbo. Progress of CO2 Electroreduction to Oxalic Acid [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220248. |
[6] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[7] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[8] | GUO Zhiqiang, YANG Boru, XI Chanjuan. Recent Advances in Reductive Functionalization of Carbon Dioxide with Borohydride Reagents [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220199. |
[9] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
[10] | ZHANG Zhen, DENG Yu, ZHANG Qinfang, YU Dagang. Visible Light-driven Carboxylation with CO2 [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220255. |
[11] | WANG Lijun, LI Xin, HONG Song, ZHAN Xinyu, WANG Di, HAO Leiduan, SUN Zhenyu. Efficient Electrocatalytic CO2 Reduction to CO by Tuning CdO-Carbon Black Interface [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220317. |
[12] | SONG Yingying, HUANG Lin, LI Qingsen, CHEN Limiao. Preparation of CuO/BiVO4 Photocatalyst and Research on Carbon Dioxide Reduction [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220126. |
[13] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[14] | LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032. |
[15] | LIU Jie, LI Jinsheng, BAI Jingsen, JIN Zhao, GE Junjie, LIU Changpeng, XING Wei. Constructing a Water-blocking Interlayer Containing Sulfonated Carbon Tubes to Reduce Concentration Polarization in Direct Methanol Fuel Cells [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220420. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||