Chem. J. Chinese Universities ›› 2020, Vol. 41 ›› Issue (11): 2404.doi: 10.7503/cjcu20200411
Previous Articles Next Articles
SU Gaoming, SHEN Ruichen, TAN Jie(), YUAN Quan(
)
Received:
2020-07-01
Online:
2020-11-10
Published:
2020-11-06
Contact:
TAN Jie,YUAN Quan
E-mail:tanjie416@hnu.edu.cn;yuanquan@whu.edu.cn
Supported by:
CLC Number:
TrendMD:
SU Gaoming, SHEN Ruichen, TAN Jie, YUAN Quan. Progress on the Application of Long Persistent Phosphors in Photocatalytic System[J]. Chem. J. Chinese Universities, 2020, 41(11): 2404.
Fig.2 Degradation of methyl orange using Sr2MgSi2O7: Eu2+, Dy3+ LLP?Ag3PO4 composites during the photocatalytic time process, in which the simulated sunlight(●, ▲) and visible light(○, △) were firstly used for illumination, followed by the removal of light source(A), the MO concentration?time curves of A(▲, △) and M15A1(●, ○) in illumination stage(B) and long afterglow stage(C), where M15A1 refers to a mass ratio of LPP/Ag3PO4=15, bar graph of the degradation efficiency during the whole photocatalytic process, where the blue bar and red bar represent the illumination and long persistent stage, respectively(D)[62]Copyright 2017, Royal Society of Chemistry.
Fig.3 Sterilization effect of UVC?LPP series on P. aeruginosa PAO1[77]Confocal micrograph of the blank control group(A) and four LPPs inactivated PAO1 with different X-ray irradiation times of 2?min(B), 5?min(C), 10?min(D), and 16?min(E), where the green and red colors refer to the live and dead cells.(F) The relation curve between the time that LPPs exposure to X-ray irradiation and the corresponding survival ratios of PAO1, where 100% refers to the viability of PAO1 under natural conditions.Copyright 2018, Springer Nature.
Fig.4 Schematic sketch of the afterglow mechanism of Pr3+ doped LaPO4 based on defect concentration and free radical participation[78](A) ESR spectra and 24 h decay of the Ca-144 h sample with and without X-ray irradiation, where 144 h means treated under 500 ℃ for 144 h. (B) Diagrammatic sketch of the radical implicated afterglow mechanism. The electron transitions are represented as black solid arrows. The electron and hole trap states are described as gray rectangles. The optical transitions of red, blue and UVC emissions are expressed as red, blue and purple arrows, respectively.Copyright 2020, John Wiley and Sons.
Fig.5 Diagrammatic sketch of the mechanism of Sr2MgSi2O7∶Eu2+, Dy3+ participated in the photocatalysis process[84](A)?Simple description of energy levels and photoinduced electron transfer processes. (B)—(D)?XPS spectra of Eu3d, Dy3d and Dy4d to demonstrate their behavior throughout the photocatalysis process.Copyright 2019, John Wiley and Sons.
Fig.6 Comparison of hydrogen generation process of the pristine g?C3N4, SrAl2O4:Eu2+, Dy3+ LPP, SrAl2O4:Eu2+, Dy3+@Au, g?C3N4@Au, g?C3N4@SrAl2O4:Eu2+, Dy3+, and g?C3N4@Au@SrAl2O4:Eu2+, Dy3+ composites(A), comparison of hydrogen generation process of g?C3N4@Au@xSrAl2O4:Eu2+, Dy3+ composites with different mass fractions(B)[85]Copyright 2019, Royal Society of Chemistry.
84 | Cui G., Yang X., Zhang Y., Fan Y., Chen P., Cui H., Liu Y., Shi X., Shang Q., Tang B., Angew. Chem., Int. Ed., 2019, 58(5), 1340—1344 |
85 | Liu X., Chen X., Li Y., Wu B., Luo X., Ouyang S., Luo S., Al Kheraif A. A., Lin J., J. Mater. Chem. A, 2019, 7(32), 19173—19186 |
86 | Wang C., Nie X., Shi Y., Zhou Y., Xu J., Xia X., Chen H., ACS Nano, 2017, 11(6), 5897—5905 |
1 | Li Y., Gecevicius M., Qiu J., Chem. Soc. Rev., 2016, 45(8), 2090—2136 |
2 | Matsuzawa T., Aoki Y., Takeuchi N., Murayama Y., J. Electrochem. Soc., 1996, 143(8), 2670—2673 |
3 | van den Eeckhout K., Smet P. F., Poelman D., Materials, 2010, 3(4), 2536—2566 |
4 | Zirkle C., Isis, 1959, 50(1), 68, 69 |
5 | Sidot. M., C R Acad. Sci. Paris, 1866,62, 999—1001 |
6 | Smet P. F., Moreels I., Hens Z., Poelman D., Materials, 2010, 3(4), 2834—2883 |
7 | Wang Y., Gong Y., Xu X., Li Y., J. Lumin., 2013, 133, 25—29 |
8 | Smet P. F., Botterman J., van den Eeckhout K., Korthout K., Poelman D., Opt. Mater., 2014, 36(11), 1913—1919 |
9 | Smet P. F., Viana B., Tanabe S., Peng M., Hölsä J., Chen W., Opt. Mater. Express, 2016, 6(4), 1414—1419 |
10 | Lin Z., Kabe R., Nishimura N., Jinnai K., Adachi C., Adv. Mater., 2018, 30(45), 1803713 |
11 | Lin Q., Li Z., Yuan Q., Chin. Chem. Lett., 2019, 30(9), 1547—1556 |
12 | Liu Y., Wang Y., Jiang K., Sun S., Qian S., Wu Q., Lin H., Talanta, 2020, 206, 10.1016/j.talanta.2019.120206 |
13 | Zhang Y., Huang R., Li H., Lin Z., Hou D., Guo Y., Song J., Song C., Lin Z., Zhang W., Wang J., Chu P. K., Zhu C., Small, 2020, e2003121 |
14 | Zeng W., Wang Y., Zheng M., Yang R., Luo Y., Yi X., Zhang R., J. Alloys Compd., 2020, 825, 10.1016/j.jallcom.2020.154143 |
15 | Zhang H., Zhao L., Tian S., Yang X., Liu Z., Yu X., Yang X., Zhang M., Qiu J., Xu X., J. Non⁃Cryst. Solids, 2020, 533, 10.1016/j.jnoncrysol.2019.119830 |
16 | Wu S., Li Y., Ding W., Xu L., Ma Y., Zhang L., Nano⁃Micro Lett., 2020, 12(1), 10.1007/s40820⁃020⁃0404⁃8 |
17 | Schneider J., Matsuoka M., Takeuchi M., Zhang J. L., Horiuchi Y., Anpo M., Bahnemann D. W., Chem. Rev., 2014, 114(19), 9919—9986 |
18 | Linsebigler A. L., Lu G., Yates J., J T, Chem. Rev., 1995, 95(3), 735—758 |
19 | Cai T., Liu Y., Wang L., Dong W., Zeng G., J. Photochem. Photobiol. C, 2019, 39, 58—75 |
20 | Zhang J. Y., Pan F., Hao W., Ge Q., Wang T. M., Appl. Phys. Lett., 2004, 85(23), 5778—5780 |
21 | Fang Y., Ma Y., Zheng M., Yang P., Asiri A. M., Wang X., Coord. Chem. Rev., 2018, 373, 83—115 |
22 | Jin X., Ye L., Xie H., Chen G., Coord. Chem. Rev., 2017, 349, 84—101 |
23 | Knoer G., Coord. Chem. Rev., 2015, 304, 102—108 |
24 | Maeda K., ACS Catal., 2013, 3(7), 1486—1503 |
25 | Fox M. A., Dulay M. T., Chem. Rev., 1993, 93, 1, 341—357 |
26 | Cheng B., Zhang Z., Han Z., Xiao Y., Lei S., Crystengcomm, 2011, 13(10), 3545—3550 |
27 | Dong G., Xiao X., Zhang L., Ma Z., Bao X., Peng M., Zhang Q., Qiu J., J. Mater. Chem., 2011, 21(7), 2194—2203 |
28 | Hou C., Wang Y., Zhu H., Zhou L., J. Mater. Chem. B, 2015, 3(14), 2883—2891 |
29 | Le Masne de Chermont Q., Chanac C., Seguin J., Pelle F., Maitrejean S., Jolivet J. P., Liver Transplant., 2007, 13(11), 1604—1604 |
30 | Luo H., Bos A. J. J., Dobrowolska A., Dorenbos P., Phys. Chem. Chem. Phys., 2015, 17(23), 15419—15427 |
31 | Smet P. F., Avci N., Van den Eeckhout K., Poelman D., Opt. Mater. Express, 2012, 2(10), 1306—1313 |
32 | Teng Y., Zhou J., Khisro S. N., Zhou S., Qiu J., Mater. Chem. Phys., 2014, 147(3), 772—776 |
33 | Xia Z., Li Q., Li G., Xiong M., Liao L., J. Cryst. Growth, 2011, 318(1), 958—961 |
34 | Yoshimura F., Nakamura K., Wakai F., Hara M., Yoshimoto M., Odawara O., Wada H., Appl. Surf. Sci., 2011, 257(6), 2170—2175 |
35 | Wang Y. H., Wang L., Zhang S. H., Chem. J. Chinese Universities, 2005, 26(11), 1990—1993 |
36 | Liu H., Hu X., Wang J., Liu M., Wei W., Yuan Q., Chin. Chem. Lett., 2018, 29(11), 1641—1644 |
37 | Brito H. F., Holsa J., Laamanen T., Lastusaari M., Malkamaki M., Rodrigues L. C. V., Opt. Mater. Express, 2012, 2(4), 371—381 |
38 | Wang J., Ma Q., Wang Y., Shen H., Yuan Q., Nanoscale, 2017, 9(19), 6204—6218 |
39 | Li Y., Zhou S., Dong G., Peng M., Wondraczek L., Qiu J., Sci. Rep., 2014, 4, 4059 |
40 | Sakar M., Nguyen C., Vu M., Do T., ChemSusChem, 2018, 11(5), 809—820 |
41 | Li F., Li Z., Cai Y., Zhang M., Shen Y., Wang W., Mater. Lett., 2017, 208, 111—114 |
42 | Li H., Yin S., Wang Y., Sato T., Environ. Sci. Technol., 2012, 46(14), 7741—7745 |
43 | Li H., Yin S., Wang Y., Sato T., J. Catal., 2012, 286, 273—278 |
44 | Li H., Yin S., Wang Y., Sato T., RSC Adv., 2012, 2(8), 3234—3236 |
45 | Li H., Yin S., Wang Y., Sato T., Appl. Catal. B, 2013, 132, 487—492 |
46 | Zhou Q., Peng F., Ni Y., Kou J., Lu C., Xu Z., J. Photochem. Photobiol. A, 2016, 328, 182—188 |
47 | Sui D., Chai Y., Chem. Lett., 2017, 46(4), 516—519 |
48 | Fan H. T., Zhao C. Y., Liu S., Shen H., J. Chem. Eng. Data, 2017, 62(3), 1099—1105 |
49 | Vandezande P., Gevers L. E. M., Vankelecom I. F. J., Chem. Soc. Rev., 2008, 37(2), 365—405 |
50 | Solis M., Solis A., Ines Perez H., Manjarrez N., Flores M., Process Biochem., 2012, 47(12), 1723—1748 |
51 | Panizza M., Cerisola G., Water Res., 2009, 43(2), 339—344 |
52 | Wang C., Li J., Lv X., Zhang Y., Guo G., Energy Environ. Sci., 2014, 7(9), 2831—2867 |
53 | Li X., Yu J., Jaroniec M., Chem. Soc. Rev., 2016, 45(9), 2603—2636 |
54 | Li H., Yin S., Sato T., Appl. Catal. B, 2011, 106(3/4), 586—591 |
55 | Yin H., Chen X., Hou R., Zhu H., Li S., Huo Y., Li H., ACS Appl. Mater. Interfaces, 2015, 7(36), 20076—20082 |
56 | Huo Y., Chen X., Zhang J., Pan G., Jia J., Li H., Appl. Catal. B, 2014, 148, 550—556 |
57 | Huo Y., Hou R., Chen X., Yin H., Gao Y., Li H., J. Mater. Chem. A, 2015, 3(28), 14801—14808 |
58 | Li K., Zhang H., He Y., Tang T., Ying D., Wang Y., Sun T., Jia J., Chem. Eng. J., 2015, 268, 10—20 |
59 | Liu M., Sunada K., Hashimoto K., Miyauchi M., J. Mater. Chem. A, 2015, 3(33), 17312—17319 |
60 | Yu Z., Li F., Sun L., Energy Environ. Sci., 2015, 8(3), 760—775 |
61 | Zhou J., Huang J., Xia Y., Ou H., Li Z., Sci. Total Environ., 2020, 699, 10.1016/j.scitotenv.2019.134342 |
62 | Wu H., Wang Z., Koike K., Negishi N., Jin Y., Catal. Sci. Technol., 2017, 7(17), 3736—3746 |
63 | Lu Y., Zhang X., Chu Y., Yu H., Huo M., Qu J., Crittenden J. C., Huo H., Yuan X., Appl. Catal. B, 2018, 224, 239—248 |
64 | Elimelech M., Phillip W. A., Science, 2011, 333(6043), 712—717 |
65 | Flemming H., Schaule D., Griebe T., Schmitt J., Tamachkiarowa A., Desalination, 1997, 113(2—3), 215—225 |
66 | Kang G., Gao C., Chen W., Jie X., Cao Y., Yuan Q., J. Membr. Sci., 2007, 300(1/2), 165—171 |
67 | Johnson T. A., Rehak E. A., Sahu S. P., Ladner D. A., Cates E. L., Environ. Sci. Technol., 2016, 50(21), 11912—11921 |
68 | Kadyan S., Singh S., Simantilleke A. P., Singh D., Optik, 2020, 212, 10.1016/j.ijleo.2020.164671 |
69 | AbdukaderA., Renagul A., Ailijiang T., Adil M., Chem.J . Chinese Universities, 2016, 37(5), 810—816 |
70 | De Guzman GNA., Fang M., Liang C., Bao Z., Hu S., Liu R., J. Lumin., 2020, 219, 10.1016/j.jlumin.2019.116944 |
71 | Wang B., Chen Z., Li X., Zhou J., Zeng Q., J. Alloys Compd., 2020, 812, 10.1016/j.jallcom.2019.152119 |
72 | Puxian X., Mingying P., Opt. Mater. X, 2019, 2, 100022 |
73 | Li Z., Li H., Sun H., J. Rare Earths, 2020, 38(2), 124—129 |
74 | Sun H., Gao Q., Wang A., Liu Y., Wang X., Liu F., Opt. Mater. Express, 2020, 10(5), 1296—1302 |
75 | Yan S., Liu F., Zhang J., Wang X., Liu Y., Phys. Rev. Appl., 2020, 13(4), 10.1103/PhysRevApplied.13.044051 |
76 | Wang X., Chen Y., Liu F., Pan Z., Nat. Commun., 2020, 11(1), 10.1038/s41467⁃020⁃16015⁃z |
77 | Yang Y., Li Z., Zhang J., Lu Y., Guo S., Zhao Q., Wang X., Yong Z., Li H., Ma J., Kuroiwa Y., Moriyoshi C., Hu L., Zhang L., Zheng L., Sun H., Light: Sci. Appl., 2018, 7, 88 |
78 | Li H., Liu Q., Ma J., Feng Z., Liu J., Zhao Q., Kuroiwa Y., Moriyoshi C., Ye B., Zhang J., Duan C., Sun H., Adv. Opt. Mater., 2020, 8(4), 1901727 |
79 | Tee S. Y., Win K. Y., Teo W. S., Koh L., Liu S., Teng C. P., Han M., Adv. Sci., 2017, 4(5), 1600337 |
80 | Jacobson M. Z., Colella W. G., Golden D. M., Science, 2005, 308(5730), 1901—1905 |
81 | Dutta S., J. Ind. Eng. Chem., 2014, 20(4), 1148—1156 |
82 | Li R., Chin. J. Catal., 2017, 38(1), 5—12 |
83 | Wang Q., Hisatomi T., Jia Q., Tokudome H., Zhong M., Wang C., Pan Z., Takata T., Nakabayashi M., Shibata N., Li Y., Sharp I., Kudo A., Yamada T., Domen K., Nat. Mater., 2016, 15(6), 611—615 |
[1] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[2] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[3] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[4] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[5] | ZHAO Yingzhe, ZHANG Jianling. Applications of Metal-organic Framework-based Material in Carbon Dioxide Photocatalytic Conversion [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220223. |
[6] | QIU Liqi, YAO Xiangyang, HE Liangnian. Visible-light-driven Selective Reduction of Carbon Dioxide Catalyzed by Earth-abundant Metalloporphyrin Complexes [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220064. |
[7] | XIA Wu, REN Yingyi, LIU Jing, WANG Feng. Chitosan Encapsulated CdSe QDs Assemblies for Visible Light-induced CO2 Reduction in an Aqueous Solution [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220192. |
[8] | WANG Guangqi, BI Yiyang, WANG Jiabo, SHI Hongfei, LIU Qun, ZHANG Yu. Heterostructure Construction of Noble-metal-free Ternary Composite Ni(PO3)2-Ni2P/CdS NPs and Its Visible Light Efficient Catalytic Hydrogen Production [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220050. |
[9] | SHA Meng, XU Weiqing, WU Zhichao, GU Wenling, ZHU Chengzhou. Recent Advances in Single-atom Materials for Enzyme-like Catalysis and Biomedical Applications [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220077. |
[10] | TAO Yu, OU Honghui, LEI Yongpeng, XIONG Yu. Research Progress of Single-atom Catalysts in Photocatalytic Reduction of Carbon Dioxide [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220143. |
[11] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[12] | MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7 [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210655. |
[13] | GUO Biao, ZHAO Chencan, LIU Xinxin, YU Zhou, ZHOU Lijing, YUAN Hongming, ZHAO Zhen. Effects of Surface Hydrothermal Carbon Layer on the Photocatalytic Activity of Magnetic NiFe2O4 Octahedron [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220472. |
[14] | LI Chenchen, NA Yong. g-C3N4/CdS/Ni Composite as a Bifunctional Photocatalyst for H2 Generation and 5-Hydroxymethylfurfural Oxidation [J]. Chem. J. Chinese Universities, 2021, 42(9): 2896. |
[15] | LI Yishan, GUO Liang, PENG Sifan, ZHANG Qingmao, ZHANG Yuhao, XU Shiqi. Cobalt Substitutions in Lanthanum Manganate Photocatalyst: First-principles and Visible-light Photocatalytic Ability Investigation [J]. Chem. J. Chinese Universities, 2021, 42(6): 1881. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||