Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (5): 20220032.doi: 10.7503/cjcu20220032
• Review • Previous Articles Next Articles
LI Jiafu1, ZHANG Kai2, WANG Ning1(), SUN Qiming2()
Received:
2022-01-13
Online:
2022-05-10
Published:
2022-02-28
Contact:
WANG Ning,SUN Qiming
E-mail:wangning2021@qdu.edu.cn;sunqiming@suda.edu.cn
Supported by:
CLC Number:
TrendMD:
LI Jiafu, ZHANG Kai, WANG Ning, SUN Qiming. Research Progress of Zeolite-encaged Single-atom Metal Catalysts[J]. Chem. J. Chinese Universities, 2022, 43(5): 20220032.
Catalyst | Noble or non?noble metal species | Zeolite type | Metal loading/(mass fraction, %) | Synthetic method | Characterization method | Application | Ref. |
---|---|---|---|---|---|---|---|
Rh@S?1?H | Rh atoms | MFI | 0.28—0.71 | Insitu hydrothermal synthesis | HAADF?STEM, EXAFS, XANES,CO?DRIFTS | Ammonia borane hydrolysis; Hydrogenation of nitroarenes compounds | [ |
Rh@MFI | Rh atoms | MFI | 0.95 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM | Methanol carbonylation | [ |
Rh?ZSM?5washed | Rh atoms | MFI | 0.5 | Impregnation method coupled with washing | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Oxidation of methane to acetic acid | [ |
Rh?ZSM?5 | Rh atoms | MFI | 0.1 | Incipient wetness impregnation | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Oxidation of methane to acetic acid | [ |
Rh(C2H4)2/SAPO?37 | Rh(C2H4)2 | FAU | 1.0 | Adsorption of organometallic compounds | CO?DRIFTS, EXAFS, XANES | Hydrogenation and dimerization of ethylene | [ |
Rh(CO)2/HY | Rh(CO)2 | FAU | 0.5 | Adsorption of organometallic compounds | FTIR, EXAFS, XANES | Water gas shift reaction | [ |
Pt@Y | Pt atoms | FAU | 0.6 | Insitu hydrothermal synthesis | HAADF?STEM, EXAFS, XANES | Selective hydrogenation of α,β?unsaturated aldehydes and nitroarenes | [ |
Pt?ISAS@Y | Pt atoms | FAU | 0.22 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Ethane dehydrogenation and n?hexane isomerization | [ |
Catalyst | Noble or non?noble metal species | Zeolite type | Metal loading/(mass fraction, %) | Synthetic method | Characterization method | Application | Ref. |
Pt?Zn?DeAlBEA | Pt atoms | BEA | 0.73 | Impregnation method | HAADF?STEM, EXAFS, XANES | Propane dehydrogenation | [ |
Pt/HZSM?5 | Pt atoms | MFI | 0.5 | Chemical vapor deposition | CO?DRIFTS, HAADF?STEM | CO oxidation Water?gas shift | [ |
Pt/KLTL | Pt atoms | LTL | 1.0 | Ion exchange | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | CO oxidation | [ |
Ir(C2H4)2/HY | Ir(C2H4)2 | FAU | 1.0 | Adsorption of organometallic compounds | HAADF?STEM, EXAFS | Cyclohexene hydrogenation | [ |
Ir(C2H4)2/HSSZ-53 | Ir(C2H4)2 | SFH | 1.0 | Adsorption of organometallic compounds | FTIR, HAADF?STEM, EXAFS | Ethylene hydrogenation | [ |
Ir@MWW?air | Ir atoms | MWW | 0.24 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Hydrogenolysis of alkane | [ |
Au(CH3)2/NaY | Au(CH3)2 | FAU | 1.0 | Adsorption of organometallic compounds | FTIR, HAADF?STEM, EXAFS | CO oxidation | [ |
Au?K/KLTL | Au atoms | LTL | 0.25 | Impregnation method | HAADF?STEM, EXAFS, XANES | Water?gas shift reaction | [ |
Pd/ZSM?5 | Pd atoms | MFI | 0.01—0.04 | Incipient wetness impregnation | TEM, EXAFS | Methane oxidation | [ |
Ru(acac)·(C2H4)2/HY | Ru(acac)(C2H4)2 | FAU | 1.0 | Adsorption of organometallic compounds | FTIR, EXAFS | Ethylene dimerization | [ |
Ru@S?1 | Ru atoms | MFI | 0.27 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Ammonia synthesis | [ |
Fe?BEA | Fe atoms | BEA | 0.3 | Impregnation method | Magnetic circular dichroism, M?ssbauer spectroscopy | Methane hydroxylation | [ |
FeS?1?EDTA | Fe atoms | MFI | 1.2 | Insitu hydrothermal synthesis | UV Raman spectra, EXAFS, H2?TPR | Ethane dehydrogenation | [ |
Ni@CHA | Ni atoms | CHA | 3.5 | Insitu hydrothermal synthesis | XANES, EXAFS, UV?Vis?NIR | Acetylene?selective hydrogenation | [ |
Ni@FAU | Ni atoms | FAU | 4.5 | Insitu hydrothermal synthesis | XANES, in situ neutron powder diffraction, TEM | Chemoselective alkyne/olefin separation | [ |
Cu?LTA | Cu atoms | LTA | 3.6 | Ion exchange | XANES, synchrotron powder XRD, ESR | NH3?SCR | [ |
Cu?SSZ?13 | Cu atoms | CHA | 2.1—3.1 | Ion exchange | XANES, EXAFS, UV?Vis?NIR | NH3?SCR | [ |
Ga/H?MFI | Ga atoms | MFI | 0.3—3.0 | Vapor?phase exchange | XANES, EXAFS | Propane dehydrogenation | [ |
In?CHA | In atoms | CHA | ca. 6.0 | Solid?state ion?exchange | FTIR, XANES, EXAFS | Ethane dehydrogenation | [ |
Ti/UCB?4 | calix[ | -SVY | 0.37 | Grafting of Ti complex | XANES | Cyclohexene epoxidation | [ |
Table 1 Summary of the synthesis, characterization and application of zeolite-encaged single-atom catalysts*
Catalyst | Noble or non?noble metal species | Zeolite type | Metal loading/(mass fraction, %) | Synthetic method | Characterization method | Application | Ref. |
---|---|---|---|---|---|---|---|
Rh@S?1?H | Rh atoms | MFI | 0.28—0.71 | Insitu hydrothermal synthesis | HAADF?STEM, EXAFS, XANES,CO?DRIFTS | Ammonia borane hydrolysis; Hydrogenation of nitroarenes compounds | [ |
Rh@MFI | Rh atoms | MFI | 0.95 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM | Methanol carbonylation | [ |
Rh?ZSM?5washed | Rh atoms | MFI | 0.5 | Impregnation method coupled with washing | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Oxidation of methane to acetic acid | [ |
Rh?ZSM?5 | Rh atoms | MFI | 0.1 | Incipient wetness impregnation | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Oxidation of methane to acetic acid | [ |
Rh(C2H4)2/SAPO?37 | Rh(C2H4)2 | FAU | 1.0 | Adsorption of organometallic compounds | CO?DRIFTS, EXAFS, XANES | Hydrogenation and dimerization of ethylene | [ |
Rh(CO)2/HY | Rh(CO)2 | FAU | 0.5 | Adsorption of organometallic compounds | FTIR, EXAFS, XANES | Water gas shift reaction | [ |
Pt@Y | Pt atoms | FAU | 0.6 | Insitu hydrothermal synthesis | HAADF?STEM, EXAFS, XANES | Selective hydrogenation of α,β?unsaturated aldehydes and nitroarenes | [ |
Pt?ISAS@Y | Pt atoms | FAU | 0.22 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Ethane dehydrogenation and n?hexane isomerization | [ |
Catalyst | Noble or non?noble metal species | Zeolite type | Metal loading/(mass fraction, %) | Synthetic method | Characterization method | Application | Ref. |
Pt?Zn?DeAlBEA | Pt atoms | BEA | 0.73 | Impregnation method | HAADF?STEM, EXAFS, XANES | Propane dehydrogenation | [ |
Pt/HZSM?5 | Pt atoms | MFI | 0.5 | Chemical vapor deposition | CO?DRIFTS, HAADF?STEM | CO oxidation Water?gas shift | [ |
Pt/KLTL | Pt atoms | LTL | 1.0 | Ion exchange | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | CO oxidation | [ |
Ir(C2H4)2/HY | Ir(C2H4)2 | FAU | 1.0 | Adsorption of organometallic compounds | HAADF?STEM, EXAFS | Cyclohexene hydrogenation | [ |
Ir(C2H4)2/HSSZ-53 | Ir(C2H4)2 | SFH | 1.0 | Adsorption of organometallic compounds | FTIR, HAADF?STEM, EXAFS | Ethylene hydrogenation | [ |
Ir@MWW?air | Ir atoms | MWW | 0.24 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Hydrogenolysis of alkane | [ |
Au(CH3)2/NaY | Au(CH3)2 | FAU | 1.0 | Adsorption of organometallic compounds | FTIR, HAADF?STEM, EXAFS | CO oxidation | [ |
Au?K/KLTL | Au atoms | LTL | 0.25 | Impregnation method | HAADF?STEM, EXAFS, XANES | Water?gas shift reaction | [ |
Pd/ZSM?5 | Pd atoms | MFI | 0.01—0.04 | Incipient wetness impregnation | TEM, EXAFS | Methane oxidation | [ |
Ru(acac)·(C2H4)2/HY | Ru(acac)(C2H4)2 | FAU | 1.0 | Adsorption of organometallic compounds | FTIR, EXAFS | Ethylene dimerization | [ |
Ru@S?1 | Ru atoms | MFI | 0.27 | Insitu hydrothermal synthesis | CO?DRIFTS, HAADF?STEM, EXAFS, XANES | Ammonia synthesis | [ |
Fe?BEA | Fe atoms | BEA | 0.3 | Impregnation method | Magnetic circular dichroism, M?ssbauer spectroscopy | Methane hydroxylation | [ |
FeS?1?EDTA | Fe atoms | MFI | 1.2 | Insitu hydrothermal synthesis | UV Raman spectra, EXAFS, H2?TPR | Ethane dehydrogenation | [ |
Ni@CHA | Ni atoms | CHA | 3.5 | Insitu hydrothermal synthesis | XANES, EXAFS, UV?Vis?NIR | Acetylene?selective hydrogenation | [ |
Ni@FAU | Ni atoms | FAU | 4.5 | Insitu hydrothermal synthesis | XANES, in situ neutron powder diffraction, TEM | Chemoselective alkyne/olefin separation | [ |
Cu?LTA | Cu atoms | LTA | 3.6 | Ion exchange | XANES, synchrotron powder XRD, ESR | NH3?SCR | [ |
Cu?SSZ?13 | Cu atoms | CHA | 2.1—3.1 | Ion exchange | XANES, EXAFS, UV?Vis?NIR | NH3?SCR | [ |
Ga/H?MFI | Ga atoms | MFI | 0.3—3.0 | Vapor?phase exchange | XANES, EXAFS | Propane dehydrogenation | [ |
In?CHA | In atoms | CHA | ca. 6.0 | Solid?state ion?exchange | FTIR, XANES, EXAFS | Ethane dehydrogenation | [ |
Ti/UCB?4 | calix[ | -SVY | 0.37 | Grafting of Ti complex | XANES | Cyclohexene epoxidation | [ |
1 | Yang X., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46, 1740—1748 |
2 | Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2, 1242—1264 |
3 | Wang A., Li J., Zhang T., Nat. Rev. Chem., 2018, 2, 65—81 |
4 | Su X., Yang X., Huang Y., Liu B., Zhang T., Acc. Chem. Res., 2019, 52, 656—664 |
5 | Wang X., Li Z., Qu Y., Yuan T., Wang W., Wu Y., Li Y., Chem, 2019, 5, 1486—1511 |
6 | Ji S., Chen Y., Wang X., Zhang Z., Wang D., Li Y., Chem. Rev., 2020, 120, 11900—11955 |
7 | Qin R., Liu K., Wu Q., Zheng N., Chem. Rev., 2020, 120, 11810—11899 |
8 | Wei Y., Zhang M., Zou R., Xu Q., Chem. Rev., 2020, 120, 12089—12174 |
9 | Chen Y., Ji S., Wang Y., Dong J., Chen W., Li Z., Shen R., Zheng L., Zhuang Z., Wang D., Li Y., Angew. Chem. Int. Ed., 2017, 56, 6937—6941 |
10 | Xiong Y., Dong J., Huang Z., Xin P., Chen W., Wang Y., Li Z., Jin Z., Xing W., Zhuang Z., Ye J., Wei X., Cao R., Gu L., Sun S., Zhuang L., Chen X., Yang H., Chen C., Peng Q., Chang C., Wang D., Li Y., Nat. Nanotech., 2020, 15, 390—397 |
11 | Qiao B., Wang A., Yang X., Allard F., Jiang Z., Cui Y., Liu J., Li J., Zhang T., Nat. Chem., 2011, 3, 634-641 |
12 | Bai S., Liu F., Huang B., Li F., Lin H., Wu T., Sun M., Wu J., Shao Q., Xu Y., Huang X., Nat. Commun., 2020, 11, 954 |
13 | Zhang L., Cong M., Ding X., Jin Y., Xu F., Wang Y., Chen L., Zhang L., Angew. Chem. Int. Ed., 2020, 59, 10888—10893 |
14 | Ji S., Chen Y., Zhao S., Chen W., Shi L., Wang Y., Dong J., Li Z., Li F., Chen C., Peng Q., Li J., Wang D., Li Y., Angew. Chem. Int. Ed., 2019, 58, 4271—4275 |
15 | Zhong W., Sa R., Li L., He Y., Li L., Bi J., Zhuang Z., Yu Y., Zou Z., J. Am. Chem. Soc., 2019, 141, 7615—7621 |
16 | Sun Q., Wang N., Zhang T., Bai R., Mayoral A., Zhang P., Zhang Q., Terasaki O., Yu J., Angew. Chem. Int. Ed., 2019, 58, 18570—18576 |
17 | Liu Y., Li Z., Yu Q., Chen Y., Chai Z., Zhao G., Liu S., Cheong W., Pan Y., Zhang Q., Gu L., Zheng L., Wang Y., Lu Y., Wang D., Chen C., Peng Q., Liu Y., Liu L., Chen J., Li Y., J. Am. Chem. Soc., 2019, 141, 9305—9311 |
18 | Li Y., Li L., Yu J., Chem., 2017, 3, 928—949 |
19 | Sun Q., Xie Z., Yu J., Natl. Sci. Rev., 2018, 5, 542—558 |
20 | Chen L., Sun M., Wang Z., Yang W., Xie Z., Su B., Chem. Rev., 2020, 120, 11194—11294 |
21 | Wen J. L., Zhang J. H., Jiang J. X., Chem. J. Chinese Universities, 2021, 42(1), 101—116 |
闻嘉丽, 张钧豪, 姜久兴. 高等学校化学学报, 2021, 42(1), 101—116 | |
22 | Chai Y. C., Guan N. J., Li L D.., Liu S. S., Chem. J. Chinese Universities, 2021, 42(1), 268—288 |
柴玉超, 关乃佳, 李兰冬, 刘珊珊. 高等学校化学学报, 2021, 42(1), 268—288 | |
23 | Chen S. Q., Li L., Li Y., Yu J. H., Chem. J. Chinese Universities, 2021, 42(1), 179—187 |
陈思琦, 李莉, 李乙, 于吉红. 高等学校化学学报, 2021, 42(1), 179—187 | |
24 | Jin S. Q., Sun H. M., Yang W. M., Chem. J. Chinese Universities, 2021, 42(1), 217—226 |
金少青, 孙洪敏, 杨为民. 高等学校化学学报, 2021, 42(1), 217—226 | |
25 | Jin K. Y., Li J., Li L. Wang B. Y., Yan W. F., Zhang J. N., Zhang S. Q., Chem. J. Chinese Universities, 2021, 42(1), 40—59 |
靳科研, 李菁, 李莉, 王彬宇, 闫文付, 张佳楠, 张少卿. 高等学校化学学报, 2021, 42(1), 40—59 | |
26 | Meng X. J., Wang Y. Q., Wu Q. M., Xiao F. S., Chem. J. Chinese Universities, 2021, 42(1), 21—28 |
孟祥举, 王叶青, 吴勤明, 肖丰收. 高等学校化学学报, 2021, 42(1), 21—28 | |
27 | Sun Q., Wang N., Yu J., Adv. Mater., 2021, 33, 2104442 |
28 | Wang N., Sun Q., Yu J., Adv. Mater., 2019, 31, 1803966 |
29 | Sun Q., Wang N., Xu Q., Yu J., Adv. Mater., 2020, 32, 2001818 |
30 | Wang H., Wang L., Xiao F., ACS Cent. Sci., 2020, 6, 1685—1697 |
31 | Liu L., Corma A., Nat. Rev. Mater., 2021, 6, 244—263 |
32 | Liu L., Corma A., Chem. Rev., 2018, 118, 4981—5079 |
33 | Dai C., Zhang S., Zhang A., Song C., Shi C., Guo X., J. Mater. Chem. A, 2015, 3, 16461—16468 |
34 | Liu L., Lopez⁃Haro M., Lopes W., Li C., Concepcion P., Simonelli L., Calvino J., Corma A., Nat. Mater., 2019, 18, 866—873 |
35 | Wang N., Sun Q., Bai R., Li X., Guo G., Yu J., J. Am. Chem. Soc., 2016, 138, 7484—7487 |
36 | Sun Q., Wang N., Bing Q., Si R., Liu J. , Bai R., Zhang P., Jia M., Yu J., Chem, 2017, 3, 477—493 |
37 | Sun Q., Wang N., Bai R., Hui Y., Zhang T., Do A., Zhang P., Song L., Miao S., Yu J., Adv. Sci., 2019, 6, 1802350 |
38 | Sun Q., Chen J., Wang N., He Q., Chang A., Yang C., Asakura H., Tanaka T., Hulsey J., Wang C., Yu J., Yan N., Angew. Chem. Int. Ed., 2020, 59, 20183—20191 |
39 | Sun Q., Wang N., Fan Q., Zeng L., Mayoral A., Miao S., Yang R., Jiang Z., Zhou W., Zhang J., Zhang T., Xu J., Zhang P., Cheng J., Yang D., Jia R., Li L., Zhang Q., Wang Y., Terasaki O., Yu J., Angew. Chem. Int. Ed., 2020, 59, 19450 |
40 | Wang N., Sun Q., Zhang T., Mayoral A., Li L., Zhou X., Xu J., Zhang P., Yu J., J. Am. Chem. Soc., 2021, 143, 6905—6914 |
41 | Shan J., Li M., Allard L., Lee S., Flytzani⁃Stephanopoulos M., Nature, 2017, 551, 605—608 |
42 | Qiu J., Hu J., Lan J., Wang L., Fu G., Xiao R., Ge B., Jiang J., Chem. Mater., 2019, 31, 9413—9421 |
43 | Yang Z., Li H., Zhou H., Wang L., Wang L., Zhu Q., Xiao J., Meng X., Chen J., Xiao F., J. Am. Chem. Soc., 2020, 142, 16429—16436 |
44 | Ortalan V., Uzun A., Gates B., Browning N., Nat. Nanotech., 2010, 5, 506—510 |
45 | Lu J., Aydin C., Browning N., Gates B., Angew. Chem. Int. Ed., 2012, 51, 5842—5846 |
46 | Chai Y., Wu G., Liu X., Ren Y., Dai W., Wang C., Xie Z., Guan N., Li L., J. Am. Chem. Soc., 2019, 141, 9920—9927 |
47 | Qi L., Babucci M., Zhang Y., Lund A., Liu L., Li J., Chen Y., Hoffman A., Bare S., Han Y., Gates B., Bell A., J. Am. Chem. Soc., 2021, 143, 21364—21378 |
48 | Liu L., Lopez‐Haro M., Meira D., Concepcion P., Calvino J., Corma A., Angew. Chem. Int. Ed., 2020, 59, 15695—15702 |
49 | Ryu T., Ahn N. , Seo S., Cho J., Kim H., Jo D., Park G., Kim P., Kim C., Bruce E., Wright P., Nam I., Hong S., Angew. Chem. Int. Ed., 2017, 56, 3256—3260 |
50 | Kistler J., Chotigkrai N., Xu P., Enderle B., Praserthdam P., Chen C., Browning N., Gates B., Angew. Chem. Int. Ed., 2014, 53, 8904—8907 |
51 | Yang D., Xu P., Browning N., Gates B., J. Phys. Chem. Lett., 2016, 7, 2537—2543 |
52 | Bernales V., Yang D., Yu J., Gümüşlü G., Cramer C., Gates B., Gagliardi L., ACS Appl. Mater. Interfaces, 2017, 9, 33511—33520 |
53 | Hou Y., Nagamatsu S., Asakura K., Fukuoka A., Kobayashi H., Commun. Chem., 2018, 1, 41 |
54 | Tang Y., Li Y., Fung V., Jiang D., Huang W., Zhang S., Iwasawa Y., Sakata T., Nguyen L., Zhang X., Frenkel A., Tao F., Nat. Commun., 2018, 9, 1231 |
55 | Perez⁃Aguilar J., Chen C., Hughes J., Fang C., Gates B., J. Am. Chem. Soc., 2020, 142, 11474—11485 |
56 | Shang W., Gao M., Chai Y., Wu G., Guan N., Li L., ACS Catal., 2021, 11, 7249—7256 |
57 | Moliner M., Gabay J., Kliewer C., Carr R., Guzman J., Casty G., Serna P., Corma A., J. Am. Chem. Soc., 2016, 138, 15743—15750 |
58 | Deng X., Qin B., Liu R., Qin X., Dai W., Wu G., Guan N., Ma D., Li L., J. Am. Chem. Soc., 2021, 143, 20898—20906 |
59 | Aydin C., Lu J., Liang A., Chen C., Browning N., Gates B., Nano Lett., 2011, 11, 5537—5541 |
60 | Lu J., Aydin C., Liang A., Chen C., Browning N., Gates B., ACS Catal., 2012, 2, 1002—1012 |
61 | Bayram E., Lu J., Aydin C., Browning N., Özkar S., Finney E., Gates B., Finke R., ACS Catal., 2015, 5, 3514—3527 |
62 | Hoffman A., Fang C., Gates B., J. Phys. Chem. Lett., 2016, 7, 3854—3860 |
63 | Fierro⁃Gonzalez J., Gates B., J. Phys. Chem. B, 2004, 108, 16999—17002 |
64 | Yang M., Li S., Wang Y., Herron J., Xu Y., Allard L., Lee S., Huang J., Mavrikakis M., Flytzani⁃Stephanopoulos M., Science, 2014, 346, 1498—1501 |
65 | Huang W., Zhang S., Tang Y., Li Y., Nguyen L., Li Y., Shan J., Xiao D., Gagne R., Frenkel A., Tao F., Angew. Chem. Int. Ed., 2016, 55, 13441—13445 |
66 | Ogino I., Gates B., J. Am. Chem. Soc., 2008, 130, 13338—13346 |
67 | Ogino I., Chen M., Dyer J., Kletnieks P., Haw J., Dixon D., Gates B., Chem. Eur. J., 2010, 16, 7427—7436 |
68 | Snyder B., Vanelderen P., Bols M., Hallaert S., Böttger L., Ungur L., Pierloot K., Schoonheydt R., Sels B., Solomon E., Nature, 2016, 536, 317—321 |
69 | Deng X., Bai R., Chai Y., Hu Z., Guan N., Li L., CCS Chem., 2021, 3, 1101—1114 |
70 | Chai Y., Han X., Li W., Liu S., Yao S., Wang C., Shi W., Da⁃Silva I., Manuel P., Cheng Y., Daemen L., Ramirez⁃Cuesta A., Tang C., Jiang L., Yang S., Guan N., Li L., Science, 2020, 368, 1002—1006 |
71 | Paolucci C., Verma A., Bates S., Kispersky V., Miller J., Gounder R., Delgass W., Ribeiro F., Schneider W., Angew. Chem. Int. Ed., 2014, 53, 11828—11833 |
72 | Gao F., Mei D., Wang Y., Szanyi J., Peden C., J. Am. Chem. Soc., 2017, 139, 4935—4942 |
73 | Li Y., Shen J., Peng S., Zhang J., Wu J., Liu X., Sun L., Nat. Commun., 2020, 11, 3206 |
74 | Phadke N., Van der Mynsbrugge J., Mansoor E., Getsoian A., Head⁃Gordon M., Bell A., ACS Catal., 2018, 8, 6106—6126 |
75 | Phadke N., Mansoor E., Bondil M., Head⁃Gordon M., Bell A., J. Am. Chem. Soc., 2019, 141, 1614—1627 |
76 | Maeno Z., Yasumura S., Wu X., Huang M., Liu C., Toyao T., Shimizu K., J. Am. Chem. Soc., 2020, 142, 4820—4832 |
77 | Grosso⁃Giordano N., Schroeder C., Okrut A., Solovyov A., Schöttle C., Chassé W., Marinković N., Koller H., Zones S., Katz A., J. Am. Chem. Soc., 2018, 140, 4956—4960 |
78 | Grosso⁃Giordano N., Hoffman A., Boubnov A., Small D., Bare S., Zones S., Katz A., J. Am. Chem. Soc., 2019, 141, 7090—7106 |
79 | Fang C., Zhang S., Hu Y., Vasiliu M., Perez⁃Aguilar J., Conley, E. , Dixon D., Chen C., Gates B., ACS Catal., 2019, 9, 3311—3321 |
80 | Ding K., Gulec A., Johnson A., Schweitzer N., Stucky G., Marks L., Stair P., Science, 2015, 350, 189—192 |
81 | Vaska L., Rhodes R., J. Am. Chem. Soc., 1965, 87, 4970—4971 |
82 | Hayashi T., Yamasaki K., Chem. Rev., 2003, 103, 2829—2844 |
83 | Colby D., Bergman R., Ellman J., Chem. Rev., 2010, 110, 624—655 |
84 | Goellner J., Gates B., Vayssilov G., Rösch N., J. Am. Chem. Soc., 2000, 122, 8056—8066 |
85 | Ehresmann J., Kletnieks P., Liang A., Bhirud V., Bagatchenko O., Lee E., Klaric M., Gates B., Haw J., Angew. Chem. Int. Ed., 2006, 45, 574—576 |
86 | Kletnieks P., Liang A., Craciun R., Ehresmann J., Marcus D., Bhirud V., Klaric M., Hayman M., Guenther D., Bagatchenko O., Dixon D., Gates, B., Haw, J., Chem. Eur. J., 2007, 13, 7294—7304 |
87 | Ogino I., Gates B., J. Phys. Chem. C, 2010, 114, 2685—2693 |
88 | Serna P., Gates B., Angew. Chem. Int. Ed., 2011, 50, 5528—5531 |
89 | Martinez⁃Macias C., Serna P., Gates B., ACS Catal., 2015, 5, 5647—5656 |
90 | Uzun A., Bhirud V., Kletnieks P., Haw J., Gates B., J. Phys. Chem. C, 2007, 111, 15064—15073 |
91 | Bayram E., Lu J., Aydin C., Uzun A., Browning N., Gates B., Finke R., ACS Catal., 2012, 2, 1947—1957 |
92 | Martinez⁃Macias C., Xu P., Hwang S., Lu J., Chen C., Browning N., Gates B., ACS Catal., 2014, 4, 2662—2666 |
93 | Sazama P., Moravkova J., Sklenak S., Vondrov A., Tabor E., Sadovska G., Pilar R., ACS Catal., 2020, 10, 3984—4002 |
94 | Zhu Y., Chen B., Zhao R., Zhao Q., Gies H., Xiao F., De Vos D., Yokoi T., Bao X., Kolb U., Feyen M., Maurer S., Moini A., Mueller U., Shi C., Zhang, W., Catal. Sci. Technol., 2016, 6, 6581—6592 |
95 | Zhu N., Lian Z., Zhang Y., Shan W., He H., Chinese Chem. Lett., 2019, 30, 867—870 |
96 | Tsunoji N., Opanasenko M., Kubů M., Čejka J., Nishida H., Hayakawa S., Ide Y., Sadakane M., Sano T., ChemCatChem, 2018, 10, 2536—2540 |
97 | Bai R., Navarro M., Song Y., Zhang T., Zou Y., Feng Z., Zhang P., Corma A., Yu J., Chem. Sci., 2020, 11, 12341—12349 |
98 | Bates S., Verma A., Paolucci C., Parekh A., Anggara T., Yezerets A., Schneider W., Miller J., Delgass W., Ribeiro F., J. Catal., 2014, 312, 87—97 |
99 | Shen B., Chen X., Wang H., Xiong H., Bosch E., Lazić I., Cai D., Qian W., Jin S., Liu X., Han Y., Wei F., Nature, 2021, 592, 541—544 |
[1] | QIN Yongji, LUO Jun. Applications of Single-atom Catalysts in CO2 Conversion [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220300. |
[2] | YAO Qing, YU Zhiyong, HUANG Xiaoqing. Progress in Synthesis and Energy-related Electrocatalysis of Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220323. |
[3] | FAN Jianling, TANG Hao, QIN Fengjuan, XU Wenjing, GU Hongfei, PEI Jiajing, CEHN Wenxing. Nitrogen Doped Ultra-thin Carbon Nanosheet Composited Platinum-ruthenium Single Atom Alloy Catalyst for Promoting Electrochemical Hydrogen Evolution Process [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220366. |
[4] | JIANG Bowen, CHEN Jingxuan, CHENG Yonghua, SANG Wei, KOU Zongkui. Recent Progress of Single-atom Materials in Electrochemical Biosensing [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220334. |
[5] | LIN Zhi, PENG Zhiming, HE Weiqing, SHEN Shaohua. Single-atom and Cluster Photocatalysis: Competition and Cooperation [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220312. |
[6] | TANG Quanjun, LIU Yingxin, MENG Rongwei, ZHANG Ruotian, LING Guowei, ZHANG Chen. Application of Single-atom Catalysis in Marine Energy [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220324. |
[7] | CHU Yuyi, LAN Chang, LUO Ergui, LIU Changpeng, GE Junjie, XING Wei. Single-atom Cerium Sites Designed for Durable Oxygen Reduction Reaction Catalyst with Weak Fenton Effect [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220294. |
[8] | TENG Zhenyuan, ZHANG Qitao, SU Chenliang. Charge Separation and Surface Reaction Mechanisms for Polymeric Single-atom Photocatalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220325. |
[9] | WANG Ruyue, WEI Hehe, HUANG Kai, WU Hui. Freezing Synthesis for Single Atom Materials [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220428. |
[10] | WANG Xintian, LI Pan, CAO Yue, HONG Wenhao, GENG Zhongxuan, AN Zhiyang, WANG Haoyu, WANG Hua, SUN Bin, ZHU Wenlei, ZHOU Yang. Techno-economic Analysis and Industrial Application Prospects of Single-atom Materials in CO2 Catalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220347. |
[11] | YANG Jingyi, LI Qinghe, QIAO Botao. Synergistic Catalysis Between Ir Single Atoms and Nanoparticles for N2O Decomposition [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220388. |
[12] | LIN Gaoxin, WANG Jiacheng. Progress and Perspective on Molybdenum Disulfide with Single-atom Doping Toward Hydrogen Evolution [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220321. |
[13] | REN Shijie, QIAO Sicong, LIU Chongjing, ZHANG Wenhua, SONG Li. Synchrotron Radiation X-Ray Absorption Spectroscopy Research Progress on Platinum Single-atom Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220466. |
[14] | WANG Sicong, PANG Beibei, LIU Xiaokang, DING Tao, YAO Tao. Application of XAFS Technique in Single-atom Electrocatalysis [J]. Chem. J. Chinese Universities, 2022, 43(9): 20220487. |
[15] | ZHOU Zixuan, YANG Haiyan, SUN Yuhan, GAO Peng. Recent Progress in Heterogeneous Catalysts for the Hydrogenation of Carbon Dioxide to Methanol [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220235. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||