Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (4): 636.doi: 10.7503/cjcu20170643
• Analytical Chemistry • Previous Articles Next Articles
LI Yuqing1, ZHU Qin1, XIAO Zhongliang1, LÜ Chaozhi1, FENG Zemeng2, YIN Yulong2, CAO Zhong1,*()
Received:
2017-09-26
Online:
2018-04-10
Published:
2018-03-22
Contact:
CAO Zhong
E-mail:zhongcao2004@163.com
Supported by:
CLC Number:
TrendMD:
LI Yuqing, ZHU Qin, XIAO Zhongliang, LÜ Chaozhi, FENG Zemeng, YIN Yulong, CAO Zhong. Graphene Oxide/Triangular Gold Nanoplates/Nafion Composite Modified Electrode Used for Sensitive Detection of L-Tryptophan†[J]. Chem. J. Chinese Universities, 2018, 39(4): 636.
Fig.1 SEM images of GO(A), Au TNPs(B, C) and GO/Au TNPs/Nafion hybrids(D), 3D tapping mode AFM image(E) of Au TNPs and its corresponding height profile(F)
Fig.2 DPV curves for the oxidation of L-Trp at bare GCE(a), GO/Nafion/GCE(b) and GO/Au TNPs/Nafion/GCE(c) in PBS(0.10 mol/L, pH=3.5) containing 1.000×10-5 mol/L L-TrpDPV conditions: amplitude, 0.05 V; pulse width, 0.2 s; sampling width, 0.02; pulse period, 0.5 s.
Fig.4 CV curves of GO/Au TNPs/Nafion/GCE responding to L-Trp at different scan rates(A) and corresponding relation curve of oxidation peak potential vs. logarithmic scan rate(B)Inset of (A): relation curve of oxidation peak current vs. scan rate.
Fig.5 DPV curves of GO/Au TNPs/Nafion/GCE responding to different concentrations of L-Trp(A) and the corresponding linear relation curve of response current vs. concentration of L-Trp(B)DPV conditions: amplitude, 0.05 V; pulse width, 0.2 s; sampling width, 0.02; pulse period, 0.5 s.
Modified electrode | Analyte | Linear range/(μmol·L-1) | LOD/(μmol·L-1) | Reference |
---|---|---|---|---|
SnO2/rGO/GCEa | L-Trp | 1-100 | 0.04 | [ |
Nafion/TiO2-GR/GCEb | L-Trp | 5-140 | 0.7 | [ |
Co3O4/GR/Nafion/GCE | L-Trp | 0.05-10 | 0.01 | [ |
β-CD-MNPs/GCEc | L-Trp | 0.8-300 | 0.5 | [ |
AuNPs-MWNT/ITOd | L-Trp | 0.5-90 | 0.025 | [ |
Ag@C/GCE | L-Trp | 0.1-100 | 0.04 | [ |
AgNPs@EBT/GCEe | L-Trp | 0.1-100 | 0.0984 | [ |
NiO-CuO/GR/GCE | L-Trp | 0.3-40 | 0.1 | [ |
Cu NPs/p-TAox/GCEf | L-Trp | 4.0-144.0 | 0.16 | [ |
GO/Au TNPs/Nafion/GCEg | L-Trp | 0.04-60.00 | 0.01 | This work |
Table 1 Comparison of performance with different modified electrodes
Modified electrode | Analyte | Linear range/(μmol·L-1) | LOD/(μmol·L-1) | Reference |
---|---|---|---|---|
SnO2/rGO/GCEa | L-Trp | 1-100 | 0.04 | [ |
Nafion/TiO2-GR/GCEb | L-Trp | 5-140 | 0.7 | [ |
Co3O4/GR/Nafion/GCE | L-Trp | 0.05-10 | 0.01 | [ |
β-CD-MNPs/GCEc | L-Trp | 0.8-300 | 0.5 | [ |
AuNPs-MWNT/ITOd | L-Trp | 0.5-90 | 0.025 | [ |
Ag@C/GCE | L-Trp | 0.1-100 | 0.04 | [ |
AgNPs@EBT/GCEe | L-Trp | 0.1-100 | 0.0984 | [ |
NiO-CuO/GR/GCE | L-Trp | 0.3-40 | 0.1 | [ |
Cu NPs/p-TAox/GCEf | L-Trp | 4.0-144.0 | 0.16 | [ |
GO/Au TNPs/Nafion/GCEg | L-Trp | 0.04-60.00 | 0.01 | This work |
Fig.6 Effect of interferring substance on GO/Au TNPs/Nafion/GCEa. Trp; b. Met+Trp; c. Leu+Trp; d. Ala+Trp; e. Gly+Trp; f. Val+Trp; g. Pro+Trp; h. Thr+Trp; i. Asp+Trp; j. Glu+Trp.
Sample No. | Initial value/(μmol·L-1) | Spiked/(μmol·L-1) | Found/(μmol·L-1) | Recovery(%) | RSD(%) |
---|---|---|---|---|---|
Serum 1 | 0.755 | 2.000 | 2.627 | 93.6 | 4.90 |
Serum 2 | 1.126 | 4.000 | 4.850 | 93.1 | 5.29 |
Serum 3 | 0.677 | 6.000 | 6.428 | 95.9 | 1.34 |
Serum 4 | 1.371 | 8.000 | 9.398 | 100.3 | 2.06 |
Serum 5 | 1.250 | 10.00 | 11.84 | 105.9 | 4.66 |
Table 2 Application of GO/Au TNPs/Nafion/GCE to determination of L-Trp in pork serum samples(n=5)
Sample No. | Initial value/(μmol·L-1) | Spiked/(μmol·L-1) | Found/(μmol·L-1) | Recovery(%) | RSD(%) |
---|---|---|---|---|---|
Serum 1 | 0.755 | 2.000 | 2.627 | 93.6 | 4.90 |
Serum 2 | 1.126 | 4.000 | 4.850 | 93.1 | 5.29 |
Serum 3 | 0.677 | 6.000 | 6.428 | 95.9 | 1.34 |
Serum 4 | 1.371 | 8.000 | 9.398 | 100.3 | 2.06 |
Serum 5 | 1.250 | 10.00 | 11.84 | 105.9 | 4.66 |
[1] | Richard D. M., Dawes M. A., Mathias C. W., Acheson A., Hill-Kapturczak N., Dougherty D. M., Int. J. Tryptophan. Res., 2009, 2, 45-60 |
[2] | Liu H. N., Hu C. A. A., Bai M. M., Liu G., Tossou M. C. B., Xu K., Li F. N., Liao P., Kong X. F., Wu X., Yin Y. L., Amino Acids, 2017, 49(12), 2009-2014 |
[3] | Xie G. H, Tian W., Wen L. P., Xiao K., Zhang Z., Liu Q., Hou G. L., Li P., Tian Y., Jiang L., Chem. Commun., 2015, 51(15), 3135-3138 |
[4] | Wang J., Cheng L. K., Wang J., Liu Q., Shen T. Chen N., Appl. Microbiol. Biotechnol., 2013, 97(17), 7587-7596 |
[5] | Rajalakshmi K., John S. A., J. Electroanal. Chem., 2014, 734, 31-37 |
[6] | Lieberman H. R., Agarwal S., Fulgoni V. L., J. Nutr., 2016, 146(12), 2609S-2615S |
[7] | Wang H., Ji Y., Wu G. Y., Sun K. J., Sun Y. L., Li W., Wang B., He B. B., Zhang Q., Dai Z. L., Wu Z. L., J. Nutr., 2015, 145(6), 1156-1162 |
[8] | Cui Q., Cui S.,Chinese Feed, 2003, (15), 20-22 |
(崔芹, 崔山. 中国饲料, 2003, (15), 20-22) | |
[9] | Bai M. M., Liu H. N., Xu K., Oso A. O., Wu X., Liu G., Tossou M. C. B., Al-Dhabi N. A., Duraipandiyan V., Xi Q. Y., Yin Y. L., Amino Acids, 2017, 49(1), 67-74 |
[10] | Yokus Ö. A., Kardas F., Akyıldırım O., Eren T., Ater N., Yola M. L., Sens. Actuators B: Chem., 2016, 233, 47-54 |
[11] | Nayak B. N., Buttar H. S., J. Complement. Integr. Med., 2016, 13(2), 129-136 |
[12] | Rawat K. A., Kailasa S. K., Sens. Actuators B: Chem., 2016, 222, 780-789 |
[13] | Jiao L., Bing S, Zhang X. F., Wang Y. X., Li H., Anal. Methods, 2015, 7(11), 4535-4540 |
[14] | Gomez F. J. V., Martín A., Silva M. F., Escarpa A., Electrophoresis,2015, 36(16), 1880-1885 |
[15] | Jiao Z., Si X. X., Zhang Z. M., Li G. K., Cai Z. W., Food Chem., 2012, 135(1), 285-291 |
[16] | Boulet L., Faure P., Flore P., Montérémal J., Ducros V., J. Chromatogr. B, 2017, 1054, 36-43 |
[17] | Haldorai Y., Yeon S. H., Huh Y. S., Han Y. K., Sens. Actuators B: Chem., 2017, 239, 1221-1230 |
[18] | Fan Y., Liu J. H., Lu H. T., Zhang Q., Microchim. Acta, 2011, 173(1/2), 241-247 |
[19] | Ye D. X., Luo L. Q., Ding Y. P., Liu B. D., Liu X., Analyst,2012, 137(12), 2840-2845 |
[20] | Wang H. X., Zhou Y. H., Guo Y. J., Liu W. J., Dong C., Wu Y. H., Li S. D., Shuang S. M., Sens. Actuators B: Chem., 2012, 163(1), 171-178 |
[21] | Goyal R. N., Bishnoi S., Chasta H., Aziz M. A., Oyama M., Talanta,2011, 85(5), 2626-2631 |
[22] | Jia Z. F., Li H. Q., Zhao Y., Frazer L., Qian B. S., Borguet E., Ren F., Dikin D. A., J. Mater. Sci., 2017, 52(19), 11620-11629 |
[23] | Chen D., Feng H. B., Li J. H., Chem. Rev., 2012, 112(11), 6027-6053 |
[24] | Zhu Y. W., Murali S., Cai W. W., Li X. S., Suk J. W., Potts J. R., Ruoff R. S., Adv. Mater., 2010, 22(35), 3906-3924 |
[25] | Fu Y., Wang J. Y., Liu Q. X., Zeng H. B., Carbon,2014, 77, 710-721 |
[26] | Frost R., Jönsson G. E., Chakarov D., Svedhem S., Kasemo B., Nano. Lett., 2012, 12(7), 3356-3362 |
[27] | Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6(3), 183-191 |
[28] | Dreyer D. R., Park S, Bielawski C. W., Ruoff R. S., Chem. Soc. Rev., 2010, 39(1), 228-240 |
[29] | Lv C. Z., Xun Y., Cao Z., Xie J. L., Li D., Liu G., Yu L., Feng Z. M., Yin Y. L., Tan S. Z., Food Anal. Methods, 2017, 10(7), 2252-2261 |
[30] | Jia H. P., Dreyer D. R., Bielawski C. W., Tetrahedron,2011, 67(24), 4431-4434 |
[31] | Li N., Zhao P. X., Astruc D., Angew. Chem. Int. Ed., 2014, 53(7), 1756-1789 |
[32] | Pedireddy S., Lee H. K., Tjiu W. W., Phang I. Y., Tan H. R., Chua S. Q., Troadec C., Ling X. Y., Nat. Commun., 2014, 5, 4947 |
[33] | Zhang L., Huang Y. J., Wang J. Y., Rong Y., Lai W. H., Zhang J. W., Chen T., Langmuir,2015, 31(19), 5537-5544 |
[34] | Skrabalak S. E., Au L., Li X. D., Xia Y. N., Nat. Protoc., 2007, 2(9), 2182-2190 |
[35] | Xun Y., Cao Z., Song T. M., Lü C. Z., Liu F., He J. L., Yang R. H., Chem. J. Chinese Universities, 2016, 37(5), 835-843 |
(寻艳, 曹忠, 宋天铭, 吕超志, 刘峰, 何婧琳, 杨荣华. 高等学校化学学报, 2016, 37(5), 835-843) | |
[36] | He J. L., Tian Y. F., Cao Z., Zou W., Sun X., Sens. Actuators B: Chem., 2013, 181, 835-841 |
[37] | Cao Z., Gong F. C., Tu M., Zeng M. X., Huang X. X., Zhang L., Tan S. Z., Sun L. X., Gu N., Anal. Lett., 2009, 42(17), 2820-2837 |
[38] | Huang Y. J., Ferhan A. R., Gao Y., Dandapat A., Kim D. H., Nanoscale,2014, 6(12), 6496-6500 |
[39] | Chen L., Ji F., Xu Y., He L., Mi Y. F., Bao F., Sun B. Q., Zhang X. H., Zhang Q., Nano. Lett., 2014, 14(12), 7201-7206 |
[40] | Chu H. C., Kuo C. H., Huang M. H., Inorg. Chem., 2006, 45(2), 808-813 |
[41] | Singh A., Chaudhari M., Sastry M., Nanotechnology,2006, 17(9), 2399-2405 |
[42] | Goyal R. N., Aliumar A., Oyama M., J. Electroanal. Chem., 2009, 631(1/2), 58-61 |
[43] | Liu X., Luo L. Q., Ding Y. P., Ye D. X., Bioelectrochem., 2011, 82(1), 38-45 |
[44] | Mao S. X., Li W. F., Long Y. M., Tu Y. F., Deng A. P., Anal. Chim. Acta, 2012, 738, 35-40 |
[45] | Prabakaran E., Rani V. S. V., Brabakaran A., Pandian K., Jesudurai K., J. Adv. Electrochem., 2016, 2(2), 78-84 |
[46] | Liu B. D., Ouyang X. Q., Ding Y. P., Luo L. Q., Xu D., Ning Y. Q., Talanta,2016, 146, 114-121 |
[47] | Wang C., Zou X. C., Zhao X., Wang Q., Tan J., Yuan R., J. Electroanal. Chem., 2015, 741, 36-41 |
[1] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[2] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[3] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[4] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[5] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
[6] | ZHU Deshuai, ZHAO Jianying, YANG Zhenghui, GUO Haiquan, GAO Lianxun. Graphene Oxide/Polyimide Composites with High Energy Storage Density Based on Multilayer Structure [J]. Chem. J. Chinese Universities, 2021, 42(8): 2694. |
[7] | LI Peihong, ZHANG Chunling, DAI Xueyan, SUI Yanlong. Progress of Graphene Oxide/Polymer Composite Hydrogel [J]. Chem. J. Chinese Universities, 2021, 42(6): 1694. |
[8] | MIAO Weijun, WU Feng, WANG Yong, WANG Zongbao. In⁃situ Study of the Epitaxial Crystallization of PCL/RGO at High Shear Rate [J]. Chem. J. Chinese Universities, 2021, 42(3): 910. |
[9] | HUANG Dongxue, ZHANG Ying, ZENG Ting, ZHANG Yuanyuan, WAN Qijin, YANG Nianjun. Transition Metal Sulfides Hybridized with Reduced Graphene Oxide for High-Performance Supercapacitors [J]. Chem. J. Chinese Universities, 2021, 42(2): 643. |
[10] | WANG Bowei, MA Rui, WU Fan, LIU Zhihui, LI Lingfeng, ZHANG Xiao, LIU Dingkun, YANG Nan, LI Meihui, YANG Defeng, SUN Qi. Preparation and Characterization of Graphene Oxide-sodium Alginate-chitosan Composite Scaffold [J]. Chem. J. Chinese Universities, 2020, 41(9): 2099. |
[11] | ZHANG Weiguo, FAN Songhua, WANG Hongzhi, YAO Suwei. Synthesis of Self-assembled α-Fe2O3/Graphene Hydrogel for Supercapacitors with Promising Electrochemical Properties [J]. Chem. J. Chinese Universities, 2020, 41(8): 1850. |
[12] | CHEN Yantian, QIE Hantong, ZHANG Yinjie, ZHOU Caiji, TAN Xiao, LIN Aijun. Synthesis of Reduced Graphene Oxide Supported Zero-valent Iron and Its Treatment of TNT Wastewater [J]. Chem. J. Chinese Universities, 2020, 41(8): 1836. |
[13] | ZHANG Xiaofei, WU Lie, LI Shanshan, ZHU Manyu, CHENG Xiaowei, JIANG Xiu’e. Effect of Phase Behavior of Phospholipids on Lipid Membrane Damage Induced by Graphene Oxide † [J]. Chem. J. Chinese Universities, 2020, 41(4): 661. |
[14] | GUAN Fanglan,LI Xin,ZHANG Qun,GONG Yan,LIN Ziyu,CHEN Yao,WANG Lejun. Fabrication and Capacitance Performance of Laser-machined RGO/MWCNT/CF In-plane Flexible Micro-supercapacitor † [J]. Chem. J. Chinese Universities, 2020, 41(2): 300. |
[15] | FANG Mingliang,LIU Dong,HU Meishao,WANG Lei. Synthesis and Properties of Highly Branched Comb-shaped Poly(aryl ether sulfone)s/imidazolium-functionalized Graphene Oxide Anion Exchange Composite Membranes † [J]. Chem. J. Chinese Universities, 2020, 41(2): 365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||