Chem. J. Chinese Universities ›› 2018, Vol. 39 ›› Issue (4): 832.doi: 10.7503/cjcu20170384
• Polymer Chemistry • Previous Articles
GAO Feilong, LI Yongcun*(), LUAN Yunbo*(), XUE Zhicheng, GUO Zhangxin, ZHANG Qi, WU Guiying
Received:
2017-05-22
Online:
2018-04-10
Published:
2018-03-08
Contact:
LI Yongcun,LUAN Yunbo
E-mail:liyongcun@tyut.edu.cn;luanyunbo@tyut.edu.cn
Supported by:
CLC Number:
TrendMD:
GAO Feilong, LI Yongcun, LUAN Yunbo, XUE Zhicheng, GUO Zhangxin, ZHANG Qi, WU Guiying. Enhancement Mechanisms of Mechanical and Self-Healing Properties of Thermoplastic Polyurethane Composites Induced by Different G-CNT Hybridization Systems†[J]. Chem. J. Chinese Universities, 2018, 39(4): 832.
Fig.1 SEM images of G/TPU(A, A'), G/TPU+CNT/TPU(B, B'), G-CNT/TPU(C, C ') and G+CNT/TPU(D, D') with grapheme sheets(A), mechanical(B), ultrasonic(C) and pre-composite(D)(A')-(D') SEM images after loading and breaking.
Fig.3 Mesoscopic model diagram and interface load transfer mechanism diagram of four kinds of TPU compositesRepresent representative elements of five kind of TPU materials: (A) pure TPU; (B) G/TPU; (C) G/TPU+CNT/TPU; (D) G-CNT/TPU; (E) G+CNT/TPU. Represent deformable diagram of four kinds of TPU composites under external load; (F) G/TPU; (G) G/TPU+CNT/TPU; (H) G-CNT/TPU; (I) G+CNT/TPU. Represent deformable diagram of half of the RVE model of four kinds of TPU composites under external load: (J) G/TPU; (K) G/TPU+CNT/TPU; (L) G-CNT/TPU; (M) G+CNT/TPU. Represent partial enlarged drawing of interface morphologies of four kinds of TPU composites: (N) G/TPU; (O) G/TPU+CNT/TPU; (P) G-CNT/TPU; (Q) G+CNT/TPU.
Fig.5 Tensile strength of different TPU composites before and after microwave healinga. Pure TPU; b. G/TPU; c. G/TPU+CNT/TPU; d. G-CNT/TPU; e. G+CNT/TPU.
[1] | White S. R., Sottos N. R., Geubelle P. H., Moore J. S., Kessler M. R., Sriram S. R., Brown E. N., Viswanathan S., Nature,2001, 409(6822), 794-797 |
[2] | Ye X. J., Song Y. X., Zhu Y., Yang G. C., Rong M. Z., Zhang M. Q., Composites Science and Technology,2014, 104(104), 40-46 |
[3] | Dry C., Composite Structures, 1996, 35(3), 263-269 |
[4] | Chen X., Wudl F., Mal A. K., Shen H., Nutt S. R., Macromolecules,2003, 36, 1802-1807 |
[5] | Chen X., Dam M. A., Ono A., Mal A., Shen H., Nutt S. R., Sheran K., Wudl F., Science,2002, 295(5560), 1698-1702 |
[6] | Cordier P., Tournilhac F., Soulié-Ziakovic C., Leibler L., Nature,2008, 451(7181), 977-980 |
[7] | Kallista S. J., Ward T. C., Journal of the Royal Society Interface,2007, 4(13), 405-411 |
[8] | Burattini S., Colquhoun H. M., Fox J. D., Friedmann D., Greenland B. W., Harris P. J. F., Hayes W., Mackay M. E., Rowan S. J.,Chemical Communications, 2009, 6717-6719 |
[9] | Zhang M. M., Xu D. H., Yan X. Z., Chen J. Z., Dong S. Y., Zheng B., Huang F. H., Angewandte Chemie, 2012, 51(28), 7117-7121 |
[10] | Roy S., Srivastava S. K., Pionteck J., Mittal V., Macromolecular Materials and Engineering,2015, 300(3), 346-357 |
[11] | Kong L., Yin X., Yuan X., Zhang Y., Liu X., Cheng L., Zhang L., Carbon,2014, 73(73), 185-193 |
[12] | Zhang B., Asmatulu R., Soltani S. A., Le L. N., Journal of Applied Polymer Science,2014, 131(19), 453-461 |
[13] | Roumeli E., Pavlidou E., Bikiaris D., Chrissafis K., Carbon,2014, 67(2), 475-487 |
[14] | Cao N. N., Zheng Y. Y., Fan Z. M., Wang X.,Acta Polymerica Sinica, 2015, (8), 963-972 |
(曹宁宁, 郑玉婴, 樊志敏, 王翔. 高分子学报, 2015, (8), 963-972 ) | |
[15] | Liu Y. H., Lin Y. Y., Zhang D. G., Chen C. L., Wu G. Z., Zhang Y. Y., Luan W. L., Chem. J. Chinese Universities, 2016, 37(7), 1402-1407 |
(刘尧华, 林摇宇, 张栋葛, 陈春蕾, 吴国章, 张摇衍, 栾伟玲. 高等学校化学学报, 2016, 37(7), 1402-1407) | |
[16] | Zhou T., Zha J. W., Hou Y., Wang D., Zhao J., Dang Z. M., ACS Applied Materials and Interfaces,2011, 3(12), 4557-4560 |
[17] | Li D., Muller M. B., Gilje S., Kaner R. B., Wallace G. G., Nature Nanotechnology, 2008, 3(2), 101-105 |
[18] | Yang S. Y., Lin W. N., Huang Y. L., Tien H. W., Wang J. Y., Ma C. C., Li S. M., Wang Y. S., Carbon,2011, 49(3), 793-803 |
[19] | Liu L. L., Zhao D. X., Yang Z. Z., Chem. Res. Chinese Universities, 2015, 31(5), 878-884 |
[20] | Zhang C., Ren L. L., Wang X. Y., Liu T. X., Chemical Physics, 2010, 114, 11435-11440 |
[21] | Romano M. S., Li N., Antiohos D., Razal J. M., Nattestad A., Beirne S., Advanced Materials, 2013, 25, 6602-6606 |
[22] | Gouda P. S. S, Kulkarni R., Kurbet S. N., Jawali D., Advanced Materials Letters, 2013, 4(4), 261-270 |
[23] | Wang P. N., Hsieh T. H., Chiang C. L., Shen M. Y., Journal of Nanomaterials, 2015, 2015, 1-9 |
[24] | Pradhan B., Srivastava S. K., Polymer International, 2014, 63(7), 1219-1228 |
[25] | Sadasivuni K. K., Ponnamma D., Kumar B., Strankowski M., Cardinaels R., Moldenaers P., Thomas S., Grohens Y., Composites Science and Technology,2014, 104, 18-25 |
[26] | Liu S., Tian M., Yan B. Y., Yao Y., Zhang L. Q., Nishi T., Ning N. Y., Polymer,2015, 56, 375-384 |
[27] | Gu Z. L., Mechanics of Short Fiber Composites, National Defense Industry Press, Beijing, 1987, 97-149 |
(顾震隆. 短纤维复合材料力学, 北京: 国防工业出版社, 1987, 97-149) | |
[28] | Peng Z. H., Peng Y. F., Ning Y. T., Peng J. C., Guo Y. H., Henan Science, 2010, 12, 1526-1529 |
(彭志华, 彭延峰, 宁艳桃, 彭景翠, 郭燕春. 河南科学, 2010, 12, 1526-1529) | |
[29] | Zhao D. L., Shen Z. M., Journal of Inorganic Materials, 2005, 20(3), 608-612 |
(赵东林, 沈曾民. 无机材料学报, 2005, 20(3), 608-612) |
[1] | WANG Ruina, SUN Ruifen, ZHONG Tianhua, CHI Yuwu. Fabrication of a Dispersible Large-sized Graphene Quantum Dot Assemblies from Graphene Oxide and Its Electrogenerated Chemiluminescence Behaviors [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220161. |
[2] | LUO Xinyan, JIA Ruonan, XIANG Yong, ZHANG Xiaokun. Progress on the Stretchable Composite Solid Polymer Electrolytes [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220149. |
[3] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[4] | YAN Jiasen, HAN Xianying, DANG Zhaohan, LI Jiangang, HE Xiangming. Preparation and Performance of Paraffin/Expanded Graphite/Graphene Composite Phase Change Heat Storage Material [J]. Chem. J. Chinese Universities, 2022, 43(6): 20220054. |
[5] | FENG Li, SHAO Lanxing, LI Sijun, QUAN Wenxuan, ZHUANG Jinliang. Synthesis of Ultrathin Sm-MOF Nanosheets and Their Visible-light Induced Photodegradation of Mustard Simulant [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210867. |
[6] | CAO Lei, CHEN Meijun, YUAN Gang, CHANG Gang, ZHANG Xiuhua, WANG Shengfu, HE Hanping. Solution-gated Graphene Field Effect Transistor Sensor Based on Crown Ether Functionalization for the Detection of Mercury Ion [J]. Chem. J. Chinese Universities, 2022, 43(4): 20210688. |
[7] | BI Gening, XIAO Xiaohua, LI Gongke. Development and Validation of Multiple Physical Fields Coupling Model for Microwave-assisted Extraction [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210739. |
[8] | ZHENG Xuelian, YANG Cuicui, TIAN Weiquan. The Second Order Nonlinear Optical Properties of Azulene-defect Graphene Nanosheets with Full Armchair Edge [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210806. |
[9] | GAO Jing, HE Wentao, WANG Xinxin, XIANG Yushu, LONG Lijuan, QIN Shuhao. Preparation of DOPO Derivative Modified Carbon Nanotubes and Their Effect on Flame Retardancy of Polylactic Acid [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210670. |
[10] | YAN Wenqing, ZHANG Zeyao, LI Yan. Controlled Preparation of Carbon Nanotube Transparent Conductive Films [J]. Chem. J. Chinese Universities, 2022, 43(3): 20210626. |
[11] | ZHANG Zhibo, SHANG Han, XU Wenxuan, HAN Guangdong, CUI Jinsheng, YANG Haoran, LI Ruixin, ZHANG Shenghui, XU Huan. Self-Assembly of Graphene Oxide at Poly(3-hydroxybutyrate) Microparticles Toward High-performance Intercalated Nanocomposites [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210566. |
[12] | YANG Junge, GAO Chengqian, LI Boxin, YIN Dezhong. Preparation of High Thermal Conductivity Phase Change Monolithic Materials Based on Pickering Emulsion Stabilized by Surface Modified Graphene Oxide [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210593. |
[13] | HU Bo, ZHU Haochen. Dielectric Constant of Confined Water in a Bilayer Graphene Oxide Nanosystem [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210614. |
[14] | YU Bin, CHEN Xiaoyan, ZHAO Yue, CHEN Weichang, XIAO Xinyan, LIU Haiyang. Graphene Oxide-based Cobalt Porphyrin Composites for Electrocatalytic Hydrogen Evolution Reaction [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210549. |
[15] | WANG Xueli, SONG Xiangwei, XIE Yanning, DU Niyang, WANG Zhenxin. Preparation, Characterization of Partially Reduced Graphene Oxide and Its Killing Effect on Human Cervical Cancer Cells [J]. Chem. J. Chinese Universities, 2022, 43(2): 20210595. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||