Chem. J. Chinese Universities ›› 2022, Vol. 43 ›› Issue (3): 20210670.doi: 10.7503/cjcu20210670
• Polymer Chemistry • Previous Articles Next Articles
GAO Jing1, HE Wentao1(), WANG Xinxin2, XIANG Yushu2, LONG Lijuan2, QIN Shuhao2
Received:
2021-09-16
Online:
2022-03-10
Published:
2021-11-11
Contact:
HE Wentao
E-mail:wentaohe@aliyun.com
Supported by:
CLC Number:
TrendMD:
GAO Jing, HE Wentao, WANG Xinxin, XIANG Yushu, LONG Lijuan, QIN Shuhao. Preparation of DOPO Derivative Modified Carbon Nanotubes and Their Effect on Flame Retardancy of Polylactic Acid[J]. Chem. J. Chinese Universities, 2022, 43(3): 20210670.
Fig.1 Observation of CNT?DOPO and CNT?COOH dispersion in DMF and THF after ultrasonication for 5 mina. CNT-DOPO in DMF; b. CNT-DOPO in THF; c. CNT-COOH in DMF; d. CNT-COOH in THF.
Sample | T5%/℃ | Mass fraction at 700 ℃(%) |
---|---|---|
CNT?COOH | 394 | 90.2 |
DOPO?NH2 | 361 | 22.7 |
CNT?DOPO | 298 | 54.8 |
Table 1 TG data of CNT-COOH, DOPO-NH2 and CNT-DOPO
Sample | T5%/℃ | Mass fraction at 700 ℃(%) |
---|---|---|
CNT?COOH | 394 | 90.2 |
DOPO?NH2 | 361 | 22.7 |
CNT?DOPO | 298 | 54.8 |
Element | Atomic fraction(%) | Eb /eV |
---|---|---|
C1s | 83.72 | 285.1 |
N1s | 4.70 | 399.4 |
O1s | 7.73 | 532.2 |
P2s | 1.71 | 190.3 |
P2p | 2.14 | 132.7 |
Table 2 Atomic fraction and binding energy of various elements in CNT-DOPO
Element | Atomic fraction(%) | Eb /eV |
---|---|---|
C1s | 83.72 | 285.1 |
N1s | 4.70 | 399.4 |
O1s | 7.73 | 532.2 |
P2s | 1.71 | 190.3 |
P2p | 2.14 | 132.7 |
Sample | T5%/℃ | Tmax/℃ | Mass fractionat at 600 ℃(%) |
---|---|---|---|
PLA | 349.8 | 381.6 | 0.9 |
PLA/5CNT?COOH | 338.5 | 371.6 | 5.3 |
PLA/5DOPO?NH2 | 350.1 | 394.5 | 2.5 |
PLA/5CNT?DOPO | 326.9 | 368.2 | 3.7 |
Table 3 TG and DTG datas of PLA and PLA composites in N2 atmosphere
Sample | T5%/℃ | Tmax/℃ | Mass fractionat at 600 ℃(%) |
---|---|---|---|
PLA | 349.8 | 381.6 | 0.9 |
PLA/5CNT?COOH | 338.5 | 371.6 | 5.3 |
PLA/5DOPO?NH2 | 350.1 | 394.5 | 2.5 |
PLA/5CNT?DOPO | 326.9 | 368.2 | 3.7 |
Sample | TTI/s | tp/s | TTF/s | PHRR/(kW·m-2) | THR/(MJ·m-2) | av?EHC/(MJ·kg-1) |
---|---|---|---|---|---|---|
PLA PLA/5CNT?COOH | 40 36 | 316 94 | 462 834 | 703.5 378.4 | 168.6 165.3 | 22.62 23.10 |
PLA/5DOPO?NH2 | 37 | 244 | 504 | 679.9 | 162.1 | 22.35 |
PLA/5CNT?DOPO | 22 | 156 | 742 | 422.9 | 166.3 | 23.08 |
Table 4 Main heat combustion parameters of PLA and PLA composites at 50 kW/m2
Sample | TTI/s | tp/s | TTF/s | PHRR/(kW·m-2) | THR/(MJ·m-2) | av?EHC/(MJ·kg-1) |
---|---|---|---|---|---|---|
PLA PLA/5CNT?COOH | 40 36 | 316 94 | 462 834 | 703.5 378.4 | 168.6 165.3 | 22.62 23.10 |
PLA/5DOPO?NH2 | 37 | 244 | 504 | 679.9 | 162.1 | 22.35 |
PLA/5CNT?DOPO | 22 | 156 | 742 | 422.9 | 166.3 | 23.08 |
Sample | pk?COP/(g·s-1) | pk?CO2P/(g·s-1) | av?SEA/(m2·kg-1) | av?MLR/(g·s-1) | TML(%) | Char residue(%) |
---|---|---|---|---|---|---|
PLA PLA/5CNT?COOH | 0.015 0.011 | 1.723 0.726 | 0.46 0.56 | 0.250 0.127 | 99.4 96.9 | 0.6 3.1 |
PLA/5DOPO?NH2 | 0.036 | 1.503 | 0.43 | 0.236 | 98.6 | 1.4 |
PLA/5CNT?DOPO | 0.014 | 0.867 | 0.11 | 0.157 | 98.3 | 1.7 |
Table 5 Main non-heat combustion parameters of PLA and PLA composites at 50 kW/m2
Sample | pk?COP/(g·s-1) | pk?CO2P/(g·s-1) | av?SEA/(m2·kg-1) | av?MLR/(g·s-1) | TML(%) | Char residue(%) |
---|---|---|---|---|---|---|
PLA PLA/5CNT?COOH | 0.015 0.011 | 1.723 0.726 | 0.46 0.56 | 0.250 0.127 | 99.4 96.9 | 0.6 3.1 |
PLA/5DOPO?NH2 | 0.036 | 1.503 | 0.43 | 0.236 | 98.6 | 1.4 |
PLA/5CNT?DOPO | 0.014 | 0.867 | 0.11 | 0.157 | 98.3 | 1.7 |
Sample | EPhysicalbarrier(%) | EFlame inhibition(%) | ECatalytic charring(%) |
---|---|---|---|
PLA/5CNT?COOH | 45.14 | -2.12 | 2.52 |
PLA/5DOPO?NH2 | -0.52 | 1.19 | 0.80 |
PLA/5CNT?DOPO | 39.05 | -2.03 | 1.11 |
Table 6 Quantitative assessment of the flame-retardant modes for PLA and PLA composites
Sample | EPhysicalbarrier(%) | EFlame inhibition(%) | ECatalytic charring(%) |
---|---|---|---|
PLA/5CNT?COOH | 45.14 | -2.12 | 2.52 |
PLA/5DOPO?NH2 | -0.52 | 1.19 | 0.80 |
PLA/5CNT?DOPO | 39.05 | -2.03 | 1.11 |
Fig.7 Digital photos(A—D1) and SEM images(B2—D2) of the specimens after cone calorimeter test(A) PLA; (B1, B2) PLA/5CNT-COOH; (C1, C2) PLA/5DOPO-NH2; (D1, D2) PLA/5CNT-DOPO.
1 | Bourbigot S., Fontaine G., Polym. Chem., 2010, 1(9), 1413—1422 |
2 | Tawiah B., Yu B., Fei B., Polym., 2018, 10(8), 876—896 |
3 | Nazir R., Gaan S., J. Appl. Polym. Sci., 2020,137(1), 47910—47925 |
4 | Jiang P., Gu X., Zhang S., Wu S., Zhao Q., Hu Z., Ind. Eng. Chem. Res., 2015, 54(11), 2974—2982 |
5 | Gu L., Qiu J., Yao Y., Sakai E., Yang L., Compos. Sci. Technol., 2018, 161, 39—49 |
6 | Yin W., Chen L., Lu F., Song P., Dai J., Meng L., ACS Omega, 2018, 3(5), 5615—5626 |
7 | Wang X. X., He W. T., Long L. J., Huang S. W., Qin S. H., Xu G.M., J. Therm. Anal. Calorim., 2021, 145, 331—343 |
8 | Long L. J., Yin J. B., He W. T., Qin S. H., Yu J., Ind. Eng. Chem. Res., 2016, 55, 10803—10812 |
9 | Long L. J., Chang Q. F., He W. T., Xiang Y. S., Qin S.H., Yin J. B., Yu J., Polym. Degrad. Stab., 2017 , 139, 55—66 |
10 | He W. T., Song P. A., Yu B., Fang Z. P., Wang H., Prog. Mater. Sci., 2020, 114, 100687 |
11 | Tang G., Deng D., Chen J., Zhou K., Zhang H., Huang X., Zhou Z., J. Therm. Anal. Calorim., 2017, 130, 763—772 |
12 | Yu T., Jiang N., Li Y., Compos. Sci. Technol., 2014, 104, 26—33 |
13 | Wu H. X., Tong R., Qiu X. Q., Yang H. F., Lin Y. H., Cai R. F., Carbon. 2007, 45(1), 152—159 |
14 | Ma H. Y., Tong L. F., Xu Z. B., Fang Z. P., Adv. Funct. Mater., 2008, 18(3), 414—421 |
15 | Xing W., Yang W., Yang W., Hu Q., Si J., Lu H., ACS Appl. Mater. Interfaces, 2016, 8(39), 26266—26274 |
16 | Díez⁃Pascual A. M., Naffakh M., Carbon, 2012, 50(3), 857—868 |
17 | Wang S., Xin F., Chen Y., Qian L., Chen Y., Polym. Degrad. Stab., 2016, 129, 133—141 |
18 | Okpalugo T., Papakonstantinou P., Murphy H., McLaughlin J., Brown N., Carbon, 2005, 43(1), 153—161 |
19 | Yang S. Y., Ma C. M., Teng C. C., Huang Y. W., Liao S. H., Huang Y. L., Carbon, 2010, 48(3), 592—603 |
20 | An Q., Rider A. N., Thostenson E. T., Carbon, 2012, 50(11), 4130—4143 |
21 | Chen W., Liu Y., Liu P., Xu C., Liu Y., Wang Q., Sci. Rep., 2017, 7(1), 1—12 |
22 | Hapuarachchi T. D., Peijs T., Composites Part A, 2010, 41(8), 954—963 |
23 | Kashiwagi T., Grulke E., Hilding J., Groth K., Harris R., Butler K., Polym., 2004, 45(12), 4227—4239 |
24 | Peeterbroeck S., Laoutid F., Swoboda B., Lopez‐Cuesta J. M., Moreau N., Nagy J. B., Macromol. Rapid Commun., 2007, 28(3), 260—264 |
25 | Gallo E., Schartel B., Acierno D., Russo P., Eur. Polym. J., 2011, 47(7), 1390—1401 |
26 | Tang S., Wachtendorf V., Klack P., Qian L., Dong Y., RSC Adv., 2017, 7(2), 720—728 |
27 | Brehme S., Köppl T., Schartel B., Altstädt V., Polym., 2014, 14(3), 193—208 |
28 | Wang X. X., He W. T., Xu G. M., Long L. J., Huang W. J., Yu J., Acta Polym. Sin., 2019, 50(4), 419—428(王欣欣, 何文涛, 徐国敏, 龙丽娟, 黄伟江, 于杰. 高分子学报, 2019, 50(4), 419—428) |
29 | Bartholmai M., Schartel B., Polym. Adv. Technol., 2004, 15(7), 355—364 |
30 | Ma H., Tong L., Xu Z., Fang Z., Polym. Degrad. Stab., 2007, 92(8), 1439—1445 |
31 | Kashiwagi T., Mu M., Winey K., Cipriano B., Raghavan S., Pack S., Polym., 2008, 49(20), 4358—4368 |
32 | Wu D., Wu L., Zhang M., Zhao Y., Polym. Degrad. Stab., 2008, 93(8), 1577—1584 |
[1] | Jinhan Sheng, Qizhen Zheng, Ming Wang. Non-viral delivery of CRISPR/Cas9 Genome Editing [J]. Chem. J. Chinese Universities, 2022, 43(Album-4): 20220344. |
[2] | ZHAO Runyao, JI Guipeng, LIU Zhimin. Efficient Electrocatalytic CO2 Reduction over Pyrrole Nitrogen-coordinated Single-atom Copper Catalysts [J]. Chem. J. Chinese Universities, 2022, 43(7): 20220272. |
[3] | LIU Jie, LI Jinsheng, BAI Jingsen, JIN Zhao, GE Junjie, LIU Changpeng, XING Wei. Constructing a Water-blocking Interlayer Containing Sulfonated Carbon Tubes to Reduce Concentration Polarization in Direct Methanol Fuel Cells [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220420. |
[4] | XU Huan, KE Lyu, TANG Mengke, SHANG Han, XU Wenxuan, ZHANG Zilin, FU Yanan, HAN Guangdong, CUI Jinsheng, YANG Haoran, GAO Jiefeng, ZHANG Shenghui, HE Xinjian. In⁃situ Liquid Exfoliation of Montmorillonite Nanosheets in Poly(lactic acid) to Resist Oxygen Permeation [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220316. |
[5] | DING Qin, ZHANG Zixuan, XU Peicheng, LI Xiaoyu, DUAN Limei, WANG Yin, LIU Jinghai. Effects of Cu, Ni and Co Hetroatoms on Constructions and Electrocatalytic Properties of Fe-based Carbon Nanotubes [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220421. |
[6] | XU Xiaojian, LI Bo, LIN Mengxiao, ZHAN Shuo. Vacuum Freeze Drying to Prepare Porous Carbon Based Composite Membranes for Efficient Solar Steam Generation [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220361. |
[7] | HOU Congcong, WANG Huiying, LI Tingting, ZHANG Zhiming, CHANG Chunrui, AN Libao. Preparation and Electrochemical Properties of N-CNTs/NiCo-LDH Composite [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220351. |
[8] | LI Dan, XIAO Liping, FAN Jie. Inorganic-based Surface Materials with Anti-SARS-CoV-2 Properties and Their Mechanisms of Action [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220301. |
[9] | CHU Mingyue, LI Fengbo, GAO Ning, YANG Xin, YU Tingting, MA Huiyuan, YANG Guixin, PANG Haijun. Construction of a Coronal Polyoxometalate-based Composite Film for Determination of Nitrite [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210579. |
[10] | LI Anran, ZHAO Bing, KAN Wei, SONG Tianshu, KONG Xiangdong, BU Fanqiang, SUN Li, YIN Guangming, WANG Liyan. ON-OFF-ON Double Colorimetric and Fluorescent Probes Based on Phenanthro[9,10-d]imidazole Derivatives and Their Living Cells Imaging [J]. Chem. J. Chinese Universities, 2021, 42(8): 2403. |
[11] | LIANG Pingping, LIU Shuai, LI Hongyi, DING Yadan, WEN Xiaokun, LIU Junping, HONG Xia. Self-floating Porous PVDF-CNT Microbeads for Highly Efficient Solar-driven Interfacial Water Evaporation [J]. Chem. J. Chinese Universities, 2021, 42(8): 2689. |
[12] | XU Mengyi, HUANG Xuewen, LI Xiaojie, WEI Wei, LIU Xiaoya. Fabrication of Biosensor Based on “Beads-on-a-String” Shaped Composite Nano-assembly Modified Screen Printed Electrode [J]. Chem. J. Chinese Universities, 2021, 42(6): 1768. |
[13] | LIU Yuan, DENG Jinqi, ZHAO Shuai, TIAN Fei, LI Yi, SUN Jiashu, LIU Chao. Lateral Flow Assay Based on Molecular Recognition for Diagnosis of Corona Virus Disease 2019 Infection [J]. Chem. J. Chinese Universities, 2021, 42(11): 3390. |
[14] | LIAO Ni, ZHANG Jieyuan, HUANG Ziyang, ZHAO Yanxi, CHAI Yaqin, YUAN Ruo, ZHUO Ying. Construction of High Efficiency Uric Acid Sensor Based on the co-Crystal Enhanced Electrochemiluminescence from 9,10-Diphenylanthracene-perylene Microcrystals [J]. Chem. J. Chinese Universities, 2020, 41(9): 1989. |
[15] | XIA Yiwei, WANG Guangxin, FENG Yulin, HU Yuexin, ZHAO Guiyan. Preparation and Properties of Biobased Super-tough Poly(lactic acid) Composites [J]. Chem. J. Chinese Universities, 2020, 41(8): 1881. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||