Chem. J. Chinese Universities ›› 2015, Vol. 36 ›› Issue (10): 2002.doi: 10.7503/cjcu20150214
• Physical Chemistry • Previous Articles Next Articles
WU Shuixing, ZHANG Jianzhao, SU Xin, ZHANG Ji, WU Yong, GENG Yun*(), SU Zhongmin*(
)
Received:
2015-03-19
Online:
2015-10-10
Published:
2015-09-14
Contact:
GENG Yun,SU Zhongmin
E-mail:gengy575@nenu.edu.cn;zmsu@nenu.edu.cn
Supported by:
CLC Number:
TrendMD:
WU Shuixing, ZHANG Jianzhao, SU Xin, ZHANG Ji, WU Yong, GENG Yun, SU Zhongmin. Theoretical Investigation on the Effect of Extra Donor on the Performance of D-π-A Sensitizer in Dye-sensitized Solar Cell†[J]. Chem. J. Chinese Universities, 2015, 36(10): 2002.
Functional | λ/eV | Functional | λ/eV |
---|---|---|---|
B3LYP | 1.90 | MPW1K | 2.53 |
BHandHLYP | 2.67 | CAM-B3LYP | 2.70 |
PBE0 | 2.05 | wB97X | 3.01 |
M06HF | 3.14 | LC-BLYP | 3.13 |
MPWPW91 | 1.37 | Expt. | 3.05 |
Table 1 Effects of the functionals used on the lowest vertical excitation energy(λ) of dye 2 with the 6-31G* basis set in acetonitrile solution
Functional | λ/eV | Functional | λ/eV |
---|---|---|---|
B3LYP | 1.90 | MPW1K | 2.53 |
BHandHLYP | 2.67 | CAM-B3LYP | 2.70 |
PBE0 | 2.05 | wB97X | 3.01 |
M06HF | 3.14 | LC-BLYP | 3.13 |
MPWPW91 | 1.37 | Expt. | 3.05 |
Dye | Bond length/nm | BLA/nm | ∠C1—C2—C3—S/(°) | ||||
---|---|---|---|---|---|---|---|
C2—C3 | C3—C4 | C4—C5 | C5—C6 | C6—C7 | |||
1 | 0.1458 | 0.1390 | 0.1403 | 0.1393 | 0.1424 | 0.0037 | 20.42 |
2 | 0.1455 | 0.1392 | 0.1401 | 0.1394 | 0.1422 | 0.0033 | 19.09 |
3 | 0.1460 | 0.1389 | 0.1404 | 0.1392 | 0.1425 | 0.0039 | 21.28 |
4 | 0.1457 | 0.1391 | 0.1402 | 0.1393 | 0.1423 | 0.0035 | 19.10 |
Table 2 Main bond lengths, bond length alternations(BLA) and dihedral angels for dyes 1—4
Dye | Bond length/nm | BLA/nm | ∠C1—C2—C3—S/(°) | ||||
---|---|---|---|---|---|---|---|
C2—C3 | C3—C4 | C4—C5 | C5—C6 | C6—C7 | |||
1 | 0.1458 | 0.1390 | 0.1403 | 0.1393 | 0.1424 | 0.0037 | 20.42 |
2 | 0.1455 | 0.1392 | 0.1401 | 0.1394 | 0.1422 | 0.0033 | 19.09 |
3 | 0.1460 | 0.1389 | 0.1404 | 0.1392 | 0.1425 | 0.0039 | 21.28 |
4 | 0.1457 | 0.1391 | 0.1402 | 0.1393 | 0.1423 | 0.0035 | 19.10 |
Dye | State | Main configuration | λmax/nm(eV) | f | LHE |
---|---|---|---|---|---|
1 | S0 → S1 | HOMO-1→LUMO(26%), HOMO→LUMO(65%) | 396(3.14) | 1.33 | 0.953 |
2 | S0 → S1 | HOMO-2→LUMO(30%), HOMO→LUMO(53%) | 412(3.01) | 1.49 | 0.967 |
3 | S0 → S1 | HOMO-5→LUMO(19%), HOMO-2→LUMO(25%), HOMO→LUMO(47%) | 390(3.18) | 1.43 | 0.962 |
4 | S0 → S1 | HOMO-2→LUMO(38%), HOMO→LUMO(41%) | 407(3.05) | 1.47 | 0.966 |
Table 3 Calculated maximum absorption wavelength(λmax), oscillator strength(f), light harvesting efficiency(LHE) and transition nature corresponding to S0→S1 for dyes 1—4
Dye | State | Main configuration | λmax/nm(eV) | f | LHE |
---|---|---|---|---|---|
1 | S0 → S1 | HOMO-1→LUMO(26%), HOMO→LUMO(65%) | 396(3.14) | 1.33 | 0.953 |
2 | S0 → S1 | HOMO-2→LUMO(30%), HOMO→LUMO(53%) | 412(3.01) | 1.49 | 0.967 |
3 | S0 → S1 | HOMO-5→LUMO(19%), HOMO-2→LUMO(25%), HOMO→LUMO(47%) | 390(3.18) | 1.43 | 0.962 |
4 | S0 → S1 | HOMO-2→LUMO(38%), HOMO→LUMO(41%) | 407(3.05) | 1.47 | 0.966 |
Dye | Edye/eV | λmax/eV | ΔGinj/eV | ΔGreg/eV | |
---|---|---|---|---|---|
1 | -6.39 | 3.14 | -3.25 | 0.75 | 1.55 |
2 | -5.64 | 3.01 | -2.63 | 1.37 | 0.80 |
3 | -6.12 | 3.18 | -2.94 | 1.06 | 1.28 |
4 | -5.63 | 3.05 | -2.58 | 1.42 | 0.79 |
Table 4 Oxidation potential of ground and excited state and corresponding deducing injection and regeneration driving force for dyes 1—4
Dye | Edye/eV | λmax/eV | ΔGinj/eV | ΔGreg/eV | |
---|---|---|---|---|---|
1 | -6.39 | 3.14 | -3.25 | 0.75 | 1.55 |
2 | -5.64 | 3.01 | -2.63 | 1.37 | 0.80 |
3 | -6.12 | 3.18 | -2.94 | 1.06 | 1.28 |
4 | -5.63 | 3.05 | -2.58 | 1.42 | 0.79 |
Dye | ΔCB/eV | r/nm | Eint/(kJ·mol-1) |
---|---|---|---|
1 | 0.2614 | 1.127 | -35.61(1-CN-I2), -20.63(1-S-I2) |
2 | 0.2724 | 1.423 | -41.51(2-CN-I2), -21.71(2-S-I2) |
3 | 0.2557 | 1.460 | -46.86(3-CN-I2), -20.17(3-S-I2) |
4 | 0.2664 | 1.469 | -42.26(4-CN-I2), -20.84(4-S-I2) |
Table 5 Conduction band energy level shift(ΔCB), hole-surface distance(r) and interaction energy of dye-I2 interaction site(Eint) for dyes 1—4
Dye | ΔCB/eV | r/nm | Eint/(kJ·mol-1) |
---|---|---|---|
1 | 0.2614 | 1.127 | -35.61(1-CN-I2), -20.63(1-S-I2) |
2 | 0.2724 | 1.423 | -41.51(2-CN-I2), -21.71(2-S-I2) |
3 | 0.2557 | 1.460 | -46.86(3-CN-I2), -20.17(3-S-I2) |
4 | 0.2664 | 1.469 | -42.26(4-CN-I2), -20.84(4-S-I2) |
[1] | Mathew S., Yella A., Gao P., Humphry-Baker R., Curchod B. F. E., Ashari-Astani N., Tavernelli I., Rothlisberger U., Nazee-ruddin M. K., Grätzel M., Nature Chem., 2014, 6(3), 242—247 |
[2] | Yu Q., Wang Y., Yi Z., Zu N., Zhang J., Zhang M., Wang P., ACS Nano, 2010, 4(10), 6032—6038 |
[3] | Nazeeruddin M. K., Zakeeruddin S. M., Humphry-Baker R., Jirousek M., Liska P., Vlachopoulos N., Shklover V., Fischer C. H., Grätzel M., Inorg. Chem., 1999, 38(26), 6298—6305 |
[4] | Chang Y. C., Wang C. L., Pan T. Y., Hong S. H., Lan C. M., Kuo H. H., Lo C. F., Hsu H. Y., Lin C. Y., Diau E. W. G., Chem. Commun., 2011, 47(31), 8910—8912 |
[5] | Zeng W., Cao Y., Bai Y., Wang Y., Shi Y., Zhang M., Wang F., Pan C., Wang P., Chem. Mater., 2010, 22(5), 1915—1925 |
[6] | Mishra A., Fischer M. K. R., Bäuerle P., Angew. Chem. Int. Ed., 2009, 48(14), 2474—2499 |
[7] | Liu J., Li R., Si X., Zhou D., Shi Y., Wang Y., Jing X., Wang P., Energy Environ. Sci., 2010, 3(12), 1924—1928 |
[8] | Chang D. W., Tsao H. N., Salvatori P., De Angelis F., Gratzel M., Park S. M., Dai L., Lee H. J., Baek J. B., Nazeeruddin M. K., RSC Adv., 2012, 2(15), 6209—6215 |
[9] | Xu M., Wenger S., Bala H., Shi D., Li R., Zhou Y., Zakeeruddin S. M., Grätzel M., Wang P., J. Phys. Chem. C, 2009, 113(7), 2966—2973 |
[10] | Tang J., Hua J., Wu W., Li J., Jin Z., Long Y., Tian H., Energy Environ. Sci., 2010, 3(11), 1736—1745 |
[11] | Tang J., Wu W., Hua J., Li J., Li X., Tian H., Energy Environ. Sci., 2009, 2(9), 982—990 |
[12] | Zhang J., Li H. B., Zhang J. Z., Wu Y., Geng Y., Fu Q., Su Z. M., J. Mater. Chem. A, 2013, 1, 14000—14007 |
[13] | Zhang J., Li H. B., Sun S. L., Geng Y., Wu Y., Su Z. M., J. Mater. Chem., 2012, 22(2), 568—576 |
[14] | Zhang J., Kan Y. H., Li H. B., Geng Y., Wu Y., Duan Y. A., Su Z. M., J. Mol. Model., 2013, 19(4), 1597—1604 |
[15] | Zhang J., Kan Y. H., Li H. B., Geng Y., Wu Y., Su Z. M., Dyes Pigm., 2012, 95(2), 313—321 |
[16] | Su X., Zhang J., Wu Y., Geng Y., Su Z. M., Chem. J. Chinese Universities, 2013, 34(8), 1945—1952 |
(苏欣, 张吉, 吴勇, 耿允, 苏忠民. 高等学校化学学报,2013, 34(8), 1945—1952) | |
[17] | Zhang J., Li H. B., Wu Y., Geng Y., Duan Y. A., Liao Y., Su Z. M., Chem. J. Chinese Universities, 2011, 32(6), 1343—1348 |
(张吉, 李海斌, 吴勇, 耿允, 段雨爱, 廖奕, 苏忠民. 高等学校化学学报,2011, 32(6), 1343—1348) | |
[18] | Li H. B., Zhang J., Wu Y., Jin J. L., Duan Y. A., Su Z. M., Geng Y., Dyes Pigm., 2014, 108, 106—114 |
[19] | Frisch M.J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., J. A. Montgomery J., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J., Gaussian 09W, Revision A.02, Gaussian, Inc., Wallingford CT, 2009 |
[20] | Wan Z., Jia C., Duan Y., Zhou L., Lin Y., Shi Y., J. Mater. Chem., 2012, 22(48), 25140—25147 |
[21] | Boys S. F., Bernardi F., Mol. Phys., 1970, 19(4), 553—566 |
[22] | Newton M. D., Kestner N. R., Chem. Phys. Lett., 1983, 94(2), 198—201 |
[23] | José M. S., Emilio A., Julian D. G., Alberto G., Javier J., Pablo O., Daniel S. P., J. Phys.: Condens. Matter, 2002, 14(11), 2745—2779 |
[24] | Cossi M., J. Chem. Phys., 2001, 115(10), 4708—4717 |
[25] | Persson P., Bergström R., Lunell S., J. Phys. Chem. B, 2000, 104(44), 10348—10351 |
[26] | Vittadini A., Selloni A., Rotzinger F. P., Grätzel M., J. Phys. Chem. B, 2000, 104(6), 1300—1306 |
[27] | De Angelis F., Chem. Phys. Lett., 2010, 493(4—6), 323—327 |
[28] | Wang Z. S., Hara K., Dan-oh Y., Kasada C., Shinpo A., Suga S., Arakawa H., Sugihara H., J. Phys. Chem. B, 2005, 109(9), 3907—3914 |
[29] | Srinivas K., Yesudas K., Bhanuprakash K., Rao V. J., Giribabu L., J. Phys. Chem. C, 2009, 113(46), 20117—20126 |
[30] | Lu T., Chen F., J. Comput. Chem., 2012, 33(5), 580—592 |
[31] | Preat J., Jacquemin D., Michaux C., Perpète E. A., Chem. Phys., 2010, 376(1—3), 56—68 |
[32] | Islam A., Sugihara H., Arakawa H., J. Photochem. Photobiol., A, 2003, 158(2/3), 131—138 |
[33] | Daeneke T., Mozer A. J., Uemura Y., Makuta S., Fekete M., Tachibana Y., Koumura N., Bach U., Spiccia L., J. Am. Chem. Soc., 2012, 134(41), 16925—16928 |
[34] | Clifford J. N., Palomares E., Nazeeruddin M. K., Grätzel M., Nelson J., Li X., Long N. J., Durrant J. R., J. Am. Chem. Soc., 2004, 126(16), 5225—5233 |
[35] | Clark T., WIREs. Comput. Mol. Sci., 2013, 3(1), 13—20 |
[36] | Planells M., Pelleja L., Clifford J. N., Pastore M., De Angelis F., Lopez N., Marder S. R., Palomares E., Energy Environ. Sci., 2011, 4(5), 1820—1829 |
[37] | Pastore M., Mosconi E., De Angelis F., J. Phys. Chem. C, 2012, 116(9), 5965—5973 |
[1] | HE Hongrui, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Density-functional Theoretical Study on the Interaction of Indium Oxyhydroxide Clusters with Carbon Dioxide and Methane [J]. Chem. J. Chinese Universities, 2022, 43(8): 20220196. |
[2] | WONG Honho, LU Qiuyang, SUN Mingzi, HUANG Bolong. Rational Design of Graphdiyne-based Atomic Electrocatalysts: DFT and Self-validated Machine Learning [J]. Chem. J. Chinese Universities, 2022, 43(5): 20220042. |
[3] | LIU Yang, LI Wangchang, ZHANG Zhuxia, WANG Fang, YANG Wenjing, GUO Zhen, CUI Peng. Theoretical Exploration of Noncovalent Interactions Between Sc3C2@C80 and [12]Cycloparaphenylene Nanoring [J]. Chem. J. Chinese Universities, 2022, 43(11): 20220457. |
[4] | ZHOU Chengsi, ZHAO Yuanjin, HAN Meichen, YANG Xia, LIU Chenguang, HE Aihua. Regulation of Silanes as External Electron Donors on Propylene/butene Sequential Polymerization [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220290. |
[5] | CHENG Yuanyuan, XI Biying. Theoretical Study on the Fragmentation Mechanism of CH3SSCH3 Radical Cation Initiated by OH Radical [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220271. |
[6] | WANG Yuanyue, AN Suosuo, ZHENG Xuming, ZHAO Yanying. Spectroscopic and Theoretical Studies on 5-Mercapto-1,3,4-thiadiazole-2-thione Microsolvation Clusters [J]. Chem. J. Chinese Universities, 2022, 43(10): 20220354. |
[7] | XU Fei, LI Gangmei, HAN Songde, WANG Guoming. Photochromism and Photomagnetism in Two Dinuclear Lanthanide Complexes [J]. Chem. J. Chinese Universities, 2022, 43(1): 20210337. |
[8] | ZHONG Shengguang, XIA Wensheng, ZHANG Qinghong, WAN Huilin. Theoretical Study on Direct Conversion of CH4 and CO2 into Acetic Acid over MCu2Ox(M = Cu2+, Ce4+, Zr4+) Clusters [J]. Chem. J. Chinese Universities, 2021, 42(9): 2878. |
[9] | HUANG Luoyi, WENG Yueyue, HUANG Xuhui, WANG Chaojie. Theoretical Study on the Structures and Properties of Flavonoids in Plantain [J]. Chem. J. Chinese Universities, 2021, 42(9): 2752. |
[10] | MA Lijuan, GAO Shengqi, RONG Yifei, JIA Jianfeng, WU Haishun. Theoretical Investigation of Hydrogen Storage Properties of Sc, Ti, V-decorated and B/N-doped Monovacancy Graphene [J]. Chem. J. Chinese Universities, 2021, 42(9): 2842. |
[11] | YING Fuming, JI Chenru, SU Peifeng, WU Wei. λ-DFCAS: A Hybrid Density Functional Complete Active Space Self Consistent Field Method [J]. Chem. J. Chinese Universities, 2021, 42(7): 2218. |
[12] | LIU Yang, LI Qingbo, SUN Jie, ZHAO Xian. Direct Synthesis of Graphene on AlN Substrates via Ga Remote Catalyzation [J]. Chem. J. Chinese Universities, 2021, 42(7): 2271. |
[13] | LIU Changhui, LIANG Guojun, LI Yanlu, CHENG Xiufeng, ZHAO Xian. Density Functional Theory Study of NH3 Adsorption on Boron Nanotubes [J]. Chem. J. Chinese Universities, 2021, 42(7): 2263. |
[14] | WANG Jian, ZHANG Hongxing. Theoretical Study on the Structural-photophysical Relationships of Tetra-Pt Phosphorescent Emitters [J]. Chem. J. Chinese Universities, 2021, 42(7): 2245. |
[15] | HU Wei, LIU Xiaofeng, LI Zhenyu, YANG Jinlong. Surface and Size Effects of Nitrogen-vacancy Centers in Diamond Nanowires [J]. Chem. J. Chinese Universities, 2021, 42(7): 2178. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||