Please wait a minute...
图/表 详细信息
H3PO4质子化改性的g-C3N4及其光催化产H2O2性能
郑娜, 聂丽君, 高宇航, 薛坤坤, 韩晓蓓, 马跃宇, 任丽蓉, 苏王潮, 石建惠
高等学校化学学报    2025, 46 (4): 20240485-.   DOI:10.7503/cjcu20240485
摘要   (250 HTML4 PDF(pc) (8022KB)(54)  

以三聚氰胺为前驱体, 通过热缩聚法制备了块体石墨相氮化碳g-C3N4(BCN), 并利用不同浓度的H3PO4对BCN进行水热处理, 制备了质子化改性的g-C3N4(PBCN x ), 再经二甲基亚砜(DMSO)溶剂纯化, 得到相应的PBCN x -D样品. 通过X射线衍射(XRD)、 傅里叶变换红外光谱(FTIR)、 透射电子显微镜(TEM)、 X射线光电子能谱(XPS)、 元素分析(EA)和N2气吸附-脱附测试(BET)对样品进行了表征. 结果表明, PBCN x -D不仅保留了g-C3N4的原始结构, 而且具有松散的薄层结构、 更大的比表面积及更多的氨基缺陷, 这些特性提高了其光催化活性. 瞬态光电流(TPC)、 电化学阻抗(EIS)、 光致发光光谱(PL)和紫外-可见漫反射光谱(UV-Vis DRS)分析结果表明, PBCNx-D的光生电子-空穴对复合率明显降低. BCN在质子化过程中形成了光响应较差的蜜勒胺分子, 经DMSO溶剂纯化后, PBCN x -D的光电化学性能得到进一步提升. 在光催化产H2O2实验中, PBCN10-D表现出最佳的光催化活性, 光照5 h, H2O2产率为0.502 mmol/L, 为初始BCN的7.17倍.



View image in article
Fig.7 Photoluminescence spectra of BCN, PBCN x and PBCN x ⁃D(x=1, 5, 10, 15)
正文中引用本图/表的段落
为了进一步研究PBCN x 和PBCN x -D的光电子特性, 通过测定光致发光(PL)谱图来研究光催化过程中电子-空穴对的复合特性[45]. 如图7所示, 所有样品均存在g-C3N4在465 nm处的固有发射峰, 而质子化后的PBCN在435 nm处存在属于蜜勒胺结构的发射峰[43]. 通常, 光激发电子-空穴对的转移和分离速率越高, PL发射强度越低. 样品PBCN x -D的PL发射强度随磷酸用量的增加而降低, PBCN10-D的PL强度最低, 说明其较薄的片层结构使光生电子-空穴对复合率明显降低, 这将有利于光催化效率的提高. 而PBCN x 随磷酸用量的增加PL发射强度增大, 与TPC和EIS结果一致, 可能是蜜勒胺结构的增多使其在可见光下的活性降低. 然而, 与BCN相比, PBCN x 和PBCN x -D均发生了蓝移, 可能是由于
本文的其它图/表