高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (6): 20230510.doi: 10.7503/cjcu20230510
李林1,2,3(), 马静1, 许畅琳1, 陈彤瑶1, 郭衡瑶1, 李紫悠1, 武文鑫1
收稿日期:
2023-12-13
出版日期:
2024-06-10
发布日期:
2024-03-12
通讯作者:
李林
E-mail:lilin@tynu.edu.cn
基金资助:
LI Lin1,2,3(), MA Jing1, XU Changlin1, CHEN Tongyao1, GUO Hengyao1, LI Ziyou1, WU Wenxin1
Received:
2023-12-13
Online:
2024-06-10
Published:
2024-03-12
Contact:
LI Lin
E-mail:lilin@tynu.edu.cn
Supported by:
摘要:
基于氢键结合自组装策略, 以富含羟基的高生物相容性煤源腐植酸钠大分子和抗坏血酸为原料, 通过绿色经济的室温方法构建了一种低毒水溶性青色荧光碳纳米簇(HAN-CNCs). 研究发现, 在pH=5.0 条件下, Ag+可与HAN-CNCs表面的C=N/C=O基团配位结合, 从而诱导HAN-CNCs发生荧光静态猝灭, 实现对Ag+较宽线性范围(5.0~300 μmol/L)和较低检出限(27.5 nmol/L)的特异灵敏检测. 进一步观察发现, Ag+与HAN-CNCs相互作用后, HAN-CNCs在日光灯下由淡黄色变为灰蓝色, 在紫外灯下由青色荧光变为蓝紫色, 基于此, 将 HAN-CNCs制作成便携式纸基传感器, 通过手机分析测试条颜色的G/B值, 实现了Ag+的视觉比色荧光检测. 此外, HAN-CNCs在20~85 ℃范围内表现出优异的可逆热响应性能, 有望作为一种温度传感器. 荧光显微镜成像测试发现, HAN-CNCs在选择性检测活细胞中的Ag+时表现出低生物毒性和优异的细胞渗透性, 表明该传感系统可应用于评估人体潜在风险和健康安全.
中图分类号:
TrendMD:
李林, 马静, 许畅琳, 陈彤瑶, 郭衡瑶, 李紫悠, 武文鑫. 室温驱动腐植酸钠基碳纳米簇用于荧光比色检测银离子和温度传感. 高等学校化学学报, 2024, 45(6): 20230510.
LI Lin, MA Jing, XU Changlin, CHEN Tongyao, GUO Hengyao, LI Ziyou, WU Wenxin. Room Temperature Driven Sodium Humate-protected Carbon Nanoclusters for Fluorescent and Colorimetric Sensing of Ag+ and Temperature. Chem. J. Chinese Universities, 2024, 45(6): 20230510.
Fig.1 Effects of reaction conditions on fluorescence intensity of HAN⁃CNCs(A) Amount of AA; (B) reaction pH; (C) reaction temperature; (D) reaction time; (E) stirring speed.
Fig.2 UV⁃Vis absorption spectra(A), fluorescence spectra(B), excitation⁃independent emission spectra(C) and absorbance, excitation and emission spectra(D) of the HAN⁃CNCsInsets in (D): photographs of HAN⁃CuNCs under daylight and UV light irradiation of 365 nm.
Fig.3 Structure characterization of HAN⁃CNCs(A) FTIR spectra and (B) XPS spectra of HAN⁃CNCs; (C) high resolution XPS spectra of C1s; (D) N1s and (E) O1s; (F) XRD pattern of HAN⁃CNCs.
Fig.4 Morphologic analysis of HAN⁃CNCs(A) TEM image; (B) particle size; (C) SEM image; (D) EDS spectrum and percentage of major elements; (E) the element mapping of C, N, O.
Fig.5 Effect of different cations(A), fluorescence response in the presence of different concentrations of Ag+ the range of 5.0—500 μmol/L(B), the plot of fluorescence variation(F/F0) of HAN⁃CNCs by Ag+(C) and the linear relationship between F/F0 and concentration of Ag+ in the range of 5.0—300 μmol/L(D)Inset in (A): photographs with different cations under UV 365 nm irradiation.
Fig.6 Colorimetric fluorescence detection of Ag+ by HAN⁃CNCs(A) Different images of folding filter papers stained by HAN⁃CNCs under 365 nm UV irradiation; (B) the visualization detection of Ag+ using the colorimetric filter paper under the 365 nm UV lamp; (C) the linear relationship between VG/VB and concentrations of Ag+ in the range of 10.0—150 μmol/L.
Fig.7 Exploration of Ag+ detection mechanism(A) Fluorescence spectra; (B) UV⁃Vis spectra; (C) FTIR spectra of HAN⁃CNCs, Ag+ and HAN⁃CNCs⁃Ag+; (D) UV⁃Vis absorption spectra of HAN⁃CNCs in the presence of varying concentrations of Ag+; (E) fluorescence decay curves of HAN⁃CNCs and HAN⁃ CNCs⁃Ag+; (F) the linear relationship of F0/Fversus the concentrations of Ag+ over the range of 0—350 μmol/L at different temperatures.
Fig.8 Temperature responsiveness of HAN⁃CNCs(A) The fluorescence spectra of HAN⁃CNCs with temperature variation from 20 ℃ to 85 ℃; (B) The plot of fluorescence intensities of HAN⁃CNCs with temperature changing from 20 ℃ to 85 ℃; (C) The linear relationship between fluorescence intensities of HAN⁃CNCs and temperature in the range of 20—80 ℃; (D) The fluorescence intensities of HAN⁃CNCs when the temperature returned to 20 °C.
Fig.9 MCF⁃7 cells viability after 24 h and 48 h of incubation with different concentrations of HAN⁃CNCs(A); fluorescence microscope images of MCF⁃7 cells after incubation with HAN⁃CNCs(1.0 mg/mL) and HAN⁃CNCsAg+(1.0 mg/mL PEI⁃CuNCs and 100 μmol/l Ag+) for 5.0 h at 37 °C(B)(B) Scale bar: 50 μm.
1 | Liu Z. Y., Song Y. X., Wang T. S., Shan G. Y., Chem. J. Chinese Universities, 2020, 41(7), 1492—1498 |
刘兆阳, 宋永新, 王天舒, 单桂晔. 高等学校化学学报, 2020, 41(7), 1492—1498 | |
2 | Wang X., Tang H., Tian X., Zeng R., Jia Z., Huang X., Spectrochim. Acta A: Mol. Biomol Spectrosc., 2020, 229, 117996 |
3 | Cameron S. J., Hosseinian F., Willmore W. G., Int. J. Mol. Sci., 2018, 19 (7), 2030 |
4 | Yang D. Y., Zhou T., Tu Y F., Yan J. L., Microchim. Acta, 2021, 188(6), 212 |
5 | Ratan Z. A., Haidere M. F., Nurunnabi M., Shahriar S. M., Ahammad A. J. S., Shim Y. Y., Reaney M. J. T., Choe J. Y., Cancers, 2020, 12 (4), 855 |
6 | Sikder M., Lead R. J., Chandler T. J., Baalousha M., Sci. Total Environ., 2018, 618, 597—607 |
7 | Lin C. Y., Yu C. J., Lin Y. H., Tseng W. L., Anal. Chem., 2010, 82, 6830—6837 |
8 | Chatterjee A., Santra M., Won N., Kim S., Kim J. K., Kim S. B., Ahn K. H., J. Am. Chem. Soc., 2009, 131, 2040—2041 |
9 | Li Y. L., Xie F. T., Guan Y., Liu J. L., Zhang G. Q., Yao C., Yang T., Yang Y. H., Hu R., Chem. J. Chinese Universities, 2022, 43(8), 20220202 |
李玉龙, 谢发婷, 管燕, 刘嘉丽, 张贵群, 姚超, 杨通, 杨云慧, 胡蓉. 高等学校化学学报, 2022, 43(8), 20220202 | |
10 | She M. Y., Wang Z. H., Chen J., Li Q. Q., Liu P., Chen F. L., Zhang S. Y., Li J. L., Coord. Chem. Rev., 2021, 432, 213712 |
11 | Wu H., Jia J., Xu Y., Qian X., Zhu W., Sens. Actuators B: Chem. 2018, 265, 59—66 |
12 | Zhao X. E., Lei C., Gao Y., Gao H., Zhu S., Yang X., You J., Wang H., Sens. Actuators B: Chem. 2017, 253, 239—246 |
13 | Jin L., Li L., Zeng X. D., Yu S. H., Zhang J. P., Food Chem., 2023, 429, 136926 |
14 | Wang J. J., Lan Z. N., Hou S. L., Hou S. F., Analyst, 2021, 146 (24), 7618—7626 |
15 | Song Y. M., Wang X. T., Liu H., Wang X. A., Li D. D., Zhu H. L., Qian Y., Talanta, 2022, 246, 123366 |
16 | Ye F. Y., Hu M., Zheng Y. S., Coord. Chem. Rev., 2023, 493, 215328 |
17 | Chen S., Wang W., Yan M., Tu Q., Chen S. W., Li T., Yuan M. S., Wang J., Sens. Actuators B: Chem. 2018, 255, 2086—2094 |
18 | Zhang J. J., Cheng F. F., Li J. J., Zhu J. J., Lu Y., Nano Today, 2016, 11(3), 309—329 |
19 | Yang X. J., Lai Y. Q., Li Q. Y., Zhang Y. L., Wang H. B., Pang P. F., Yang W. R., Chem. J. Chinese Universities, 2021, 42(12), 3600—3605 |
杨新杰, 赖艳琼, 李秋旸, 张艳丽, 王红斌, 庞鹏飞, 杨文荣. 高等学校化学学报, 2021, 42(12), 3600—3605 | |
20 | Chunikhin S. S., Bardasov I. N., Akasov R. A., Ershov O. V., Dyes Pigments, 2022, 205, 110516 |
21 | Wei G., Jiang Y., Wang F., J. Photochem. Photobiol. A: Chem., 2018, 358, 38—43 |
22 | Pooja., Pandey H., Aggarwal S., Monika V., Varun R., Seema R. P., Asian J. Org. Chem., 2022, 11(12), 23—75 |
23 | J Devi B. S., Laxmi B., Raju C. L., Rosaiah G., Reddy A. S., Mater. Lett., 2023, 336, 133872 |
24 | Liu J. Y., Sheng M. S., Geng Y. H., Zhang Z. T., Wang T. T., Fei L., Lacoste J. D., Huo J. Z., Zhang F., Ding B., J. Mol. Struct., 2022, 1269, 133766 |
25 | Tang S. Y., Chen D., Guo G. Q., Li X. M., Wang C. X., Li T. T., Wang G., Sci. Total Environ., 2022, 825, 153913 |
26 | Anusuyadevi K., Velmathi S., Results Chem., 2023, 5, 100918 |
27 | Li H., Wang C. Z., Li X. C., Han Y. Y., Zhang Y., Dyes Pigments, 2023, 219, 111534 |
28 | Zhou P. F., Xu J. K., Hou X. Y., Dai L., Zhang J. M., Xiao X., Huo K. F., Int. J. Biol. Macromol., 2023, 253, 126714 |
29 | Han S., Wu B. S., Wang H., Wang G. S., Yang J. J., He L. Q., Wei F. F., Qin S. J., Micro Nano Lett., 2020, 15(2), 86—89 |
30 | Dong B., Liu G. F, Zhou J. T., Wang J., Jin R. F., Zhang Y., J. Hazard. Mater., 2020, 385, 121597 |
31 | Miao Z. H., Li K., Liu P. Y., Li Z., Yang H., Zhao Q., Chang M., Yang Q., Zhen L., Xu C. Y., Adv. Healthcare Mater., 2018, 7(7), 1701202 |
32 | Xue S., Xiao Y., Wang G., Fan J., Wan K., He Q., Gao M., Miao Z., Colloids Surf., A, 2021, 616, 126333 |
33 | Feng Z. Y., Zheng Y. H., Wang H. S., Feng C. P., Chen N., Wang S. Z., Chemosphere, 2023, 313, 137558 |
34 | Li L., Chen L., Song Z. R., Wu W. X., Zhao W. Y., Wei Yan., Wang B., Zhang C. F., Spectrochim. Acta A: Mol. Biomol., 2023, 294, 122557 |
35 | Liu H. X., Zhong X., Pan Q., Zhang Y., Deng W. T., Zou G. Q., Hou H. S., Ji X. B., Coord. Chem. Rev., 2024, 498, 215468 |
36 | Li L., Chen J., Jin R. C., Yan Y. X., Song Z. R., Wang J. W., Wang X. Y., Zhang Q. Y., Zhang C. F., Colloids Surf., B, 2022, 217, 112698 |
37 | Ren J., Wu W. X., Chen T. Y., Guo H. Y., Xu C. L., Ma J., Wang L. N., Wang J. F., Li L., Spectrochim. Acta A: Mol. Biomol., 2024, 304, 123438 |
38 | Li L., Wang J. W., Huo Y. J., Sun C. F., Zhang H. Y., Zhang C. F., Chinese J. Inorg. Chem., 2021, 37(12), 2113—2124 |
李林, 王佳伟, 霍俞锦, 孙彩凤, 张瀚月, 张彩凤. 无机化学学报, 2021, 37(12), 2113—2124 | |
39 | Li L., Xu X. R., Li Y. Q., Zhang C. F., Chem. J. Chinese Universities, 2019, 40(9), 1998—2004 |
李林, 许鑫汝, 李英奇, 张彩凤. 高等学校化学学报, 2019, 40(9), 1998—2004 | |
40 | Dou G., Jiang Z., ACS Omega, 2019, 4, 16536—16542 |
41 | Hao L., Li L., Yu S., Liu J., Sci. Total Environ., 2022, 834, 155427 |
42 | Yang F., Du Q., Sui L., Cheng K., Bioresour. Technol., 2021, 328, 124825 |
43 | Wang Y. F., Extraction and Toxicology Research of Humic Acid in Brown Coal, Yanbian University, Yanji, 2010 |
王玉峰. 褐煤中腐植酸的提取及毒理试验研究, 延吉: 延边大学, 2010 | |
44 | Huang Y. Q., Huang X. S., Lin H. S., Liu Z. K., Zong Y., Opt. Mater., 2021, 114, 110967 |
[1] | 黄声秀, 刘利阳, 杨伟强, 汪庆祥, 倪建聪. 双极电化学发光-分子印迹传感器检测水环境中全氟辛烷磺酸[J]. 高等学校化学学报, 2024, 45(6): 20240106. |
[2] | 张禹 陈龙 王中才 胡广 徐东 盛全康 陈奥 陈韶云 胡成龙 陈建. 表面增强拉曼光谱快速测定尿液中的葡萄糖[J]. 高等学校化学学报, 0, (): 20240215. |
[3] | 张莹 赵金凤 费哲奇 连丽丽 娄大伟 王希越. 共价有机框架衍生多孔碳固相微萃取纤维结合气相色谱法测定水样中的邻苯二甲酸酯[J]. 高等学校化学学报, 0, (): 20240137. |
[4] | 陈天泽 胡方舟 林绪波 应佚伦 邹爱华. 基于Aerolysin纳米孔道的单个β-淀粉样多肽N-端片段分析[J]. 高等学校化学学报, 0, (): 20240192. |
[5] | 韦朝鲜 李南盛 庞元昊 张云 金文英 袁亚利. 基于低共熔策略合成碳纳米聚合物用于多种生物小分子的同时电化学检测[J]. 高等学校化学学报, 0, (): 20240103. |
[6] | 邵益波 俞登捷 李雅瑞 魏好泽 金伟 于丙文. 基于参数标准化的单样本定标方法在微波等离子体炬水泥快速分析中的应用研究[J]. 高等学校化学学报, 0, (): 20240157. |
[7] | 龚文朋, 周林楠. 基于3,5-二硝基苯甲酸功能化的金属有机框架CAU-10-NH-DNBA荧光检测硫化氢[J]. 高等学校化学学报, 0, (): 20240069. |
[8] | 张慧莲, 杨新杰, 李军, 李泉, 张福娟, 张艳丽, 王红斌, 杨文荣, 庞鹏飞. 基于N掺杂Ti3C2 MXene量子点的荧光探针用于Hg2+和S2-的传感检测[J]. 高等学校化学学报, 2024, 45(5): 20230504. |
[9] | 刘康, 潘荣容, 江德臣. 基于纳米电极的单细胞内生物分子电化学分析[J]. 高等学校化学学报, 2024, 45(5): 20240027. |
[10] | 左春倩, 许瑞瑞, 毕红燕. 水产品中过敏原检测研究[J]. 高等学校化学学报, 0, (): 20240073. |
[11] | 汪增钰 刘宝红 乔亮 林灵. 非靶向脂质组学揭示巨噬细胞泡沫化进程脂质代谢功能失调[J]. 高等学校化学学报, 0, (): 20240053. |
[12] | 马勤政, 王伟, 梁旭婷. 石墨烯-金纳米材料修饰电极用于L-酪氨酸的检测[J]. 高等学校化学学报, 2024, 45(4): 20230521. |
[13] | 陈贝怡, 观文娜, 靳钊, 刘婷婷, 周睿. 酰胺和咪唑基离子液体双极性基团共嵌入式亲水C18硅胶固定相的制备与应用[J]. 高等学校化学学报, 2024, 45(4): 20230503. |
[14] | 董沛滢 刘彤 秦伟捷. RNA-蛋白质复合物规模化富集与鉴定新方法研究[J]. 高等学校化学学报, 0, (): 20240091. |
[15] | 张明峰, 吴博, 侯光昊, 周蕾, 王学重. 用超声衰减谱测量层状双金属氢氧化物粒度分布的方法[J]. 高等学校化学学报, 2024, 45(3): 20230463. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||