高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (11): 20240192.doi: 10.7503/cjcu20240192

• 研究论文 • 上一篇    下一篇

基于Aerolysin纳米孔道的单个β-淀粉样多肽N-端片段分析

陈天泽1, 胡方舟2, 林绪波3, 应佚伦4, 邹爱华1()   

  1. 1.上海师范大学化学与材料科学学院, 上海 200237
    2.华东理工大学化学与分子工程学院, 上海 200237
    3.北京航空航天大学医学科学与工程学院, 北京 100191
    4.南京大学化学化工学院, 生命分析化学国家重点实验室, 南京 210023
  • 收稿日期:2024-04-17 出版日期:2024-11-10 发布日期:2024-05-28
  • 通讯作者: 邹爱华 E-mail:aihuazou@shnu.edu.cn
  • 作者简介:第一联系人:共同第一作者.
  • 基金资助:
    国家自然科学基金(22334006)

Analysis of N-Terminal Fragment of β⁃ Amyloid Peptides Using an Aerolysin Nanopore

CHEN Tianze1, HU Fangzhou2, LIN Xubo3, YING Yilun4, ZOU Aihua1()   

  1. 1.College of Chemistry and Materials Science,Shanghai Normal University,Shanghai 200237,China
    2.School of Chemical and Molecular Engineering,East China University of Science and Technology,Shanghai 200237,China
    3.School of Medical Science and Engineering,Beihang University,Beijing 100191,China
    4.State Key Laboratory of Life Analytical Chemistry,School of Chemistry and Chemical Engineering,Nanjing University,Nanjing 210023,China
  • Received:2024-04-17 Online:2024-11-10 Published:2024-05-28
  • Contact: ZOU Aihua E-mail:aihuazou@shnu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(22334006)

摘要:

β-淀粉样蛋白(β-amyloid, Aβ)引起的淀粉样蛋白异常沉积被认为是诱发阿尔茨海默症的因素之一. 与人类不同, 啮齿动物较少出现这类特征性病变. 与人类Aβ相比, 啮齿动物Aβ的第5, 10和13位氨基酸由Arg, Tyr和His分别变为Gly, Phe和Arg. 本文采用分子动力学模拟和Aerolysin纳米孔道单分子分析技术对人类Aβ1—15和啮齿动物Aβ1—15的结构差异进行研究. 实验结果表明, 与人类Aβ1—15相比, 啮齿动物Aβ1—15穿过纳米孔道时具有更低的阻断频率和能垒, 证明了Aerolysin纳米孔道可以辨别具有细小结构差异的Aβ多肽分子. 本文以硫酸盐K2SO4作为糖胺聚糖(Glycosaminoglycans, GAGs)的简化模型, 对Aβ1—15与硫酸根离子的相互作用进行研究. 统计分析显示, 两种多肽均能与硫酸根离子结合, 降低它们被纳米孔道捕获的频率, 人类Aβ1—15的捕获频率降低25%, 啮齿动物Aβ1—15的捕获频率降低59%. 然而, 加入硫酸根离子后, 两种多肽阻断时间的变化存在明显差异, 与未加入硫酸根时相比, 人类Aβ1—15的阻断时间延长了14%, 啮齿动物Aβ1—15的阻断时间则缩短了7%. 由实验结果推测, 两种多肽不同的序列和构象导致它们与硫酸根离子结合的方式和强度不同, 对过孔行为产生了不同影响. 本文研究结果对于筛选用于阿尔茨海默症治疗的小分子抑制类药物具有参考价值.

关键词: β?淀粉样蛋白, 气单胞菌溶素, 多肽单分子分析, 生物纳米孔道

Abstract:

Alzheimer’s disease(AD) is one of the most common diseases caused by multiple neurodegenerative protein misfolding and aggregation disorders. Abnormal deposition of amyloid protein caused by β-amyloid(Aβ) peptides has been suggested as a possible predisposing factor for Alzheimer’s disease. Unlike human Aβ peptide, rodent Aβ peptide rarely has these characteristic lesions. The difference between rodent Aβ peptide and human Aβ peptide is that the 5th, 10th and 13th amino acids(Arg, Tyr, His) are replaced by Gly, Phe and Arg, respectively. In this study, molecular dynamics simulation and nanopore-based single molecule detection technology were used to study the structural differences between human Aβ1—15 and rodent Aβ1—15. The experimental results show that rodent Aβ1—15 has lower blocking frequency and energy barrier when passing through nanopore than human Aβ1—15, which proves that aerolysin nanopore can distinguish Aβ1—15 with small structural differences. Furthermore, the interaction between Aβ1—15 and sulfate ion was studied by using sulfate K2SO4 as a simplified model of glycosaminoglycan (glycosaminoglycans, GAGs). Statistical analysis showed that both peptides could bind to sulfate ions and reduce their capture frequency by aerolysin nanopore, reducing the capture frequency of human Aβ1—15 by 25% and rodent Aβ1—15 by 59%. However, after the addition of sulfate ion, there was a significant difference in the dwell time of the two peptides. Compared with the results in the absence of sulfate, the dwell time of human Aβ1—15 increased by 14% and that of rodent Aβ1—15 decreased by 7%. It is inferred from the experimental results that the different sequences and conformations of the two peptides lead to different binding ways and binding intensity to sulfate ions, which have different effects on the translocation behavior. This study is helpful to better screen small molecular inhibitors and further promote the diagnosis and treatment of Alzheimer’s disease.

Key words: β-Amyloid, Aerolysin, Single molecule analysis of peptide, Biological nanopores

中图分类号: 

TrendMD: