高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (5): 20220733.doi: 10.7503/cjcu20220733
收稿日期:
2022-11-25
出版日期:
2023-05-10
发布日期:
2023-01-20
通讯作者:
常江伟,卢思宇
E-mail:jwchang2021@zzu.edu.cn;sylu2013@zzu.edu.cn
基金资助:
WANG Siyang, JING Wen, CHANG Jiangwei(), LU Siyu(
)
Received:
2022-11-25
Online:
2023-05-10
Published:
2023-01-20
Contact:
CHANG Jiangwei, LU Siyu
E-mail:jwchang2021@zzu.edu.cn;sylu2013@zzu.edu.cn
Supported by:
摘要:
碳点是零维纳米碳材料的一种典型代表, 由碳原子 sp2/ sp3杂化构成且尺寸通常小于10 nm. 碳点独特的尺寸效应赋予其丰富的边缘活性位点和易于功能化调控等特性, 在电催化、 能源存储与转化等领域表现出广阔的应用前景. 基于此, 揭示碳点的形成机制及阐明其结构与性能的基本规律, 以指导碳点的合成并获得优异的催化性能具有重要意义. 本文在介绍碳点制备及调控策略的基础上, 结合理论研究分析了碳点类催化材料活性的来源, 并着重评述了碳点在电化学领域的最新应用进展, 探讨了功能碳点材料未来发展的机遇与挑战.
中图分类号:
TrendMD:
王斯阳, 敬稳, 常江伟, 卢思宇. 碳点的制备及电化学能源应用进展. 高等学校化学学报, 2023, 44(5): 20220733.
WANG Siyang, JING Wen, CHANG Jiangwei, LU Siyu. Recent Progress on Carbon Dots Preparation and Electrochemical Energy Application. Chem. J. Chinese Universities, 2023, 44(5): 20220733.
Fig.1 Four categories of carbon dots and their structures: graphene quantum dots(GQDs), carbon quantum dots(CQDs), carbon nanodots(CNDs) and carbonized polymer dot(CPDs) [ 14]Copyright 2021, John Wiley & Sons, Inc.
Fig.2 Schematic illustration of the synthesis of Ru@CDs & RuM@CDs and their TEM images [ 25, 26]Copyright 2019, John Wiley & Sons, Inc; Copyright 2018, John Wiley & Sons, Inc.
Fig.4 Hydrogen adsorption energy at different sites of Ru55(A) [ 44], co⁃doped Ru system(B), the calculated dis⁃sociation energy( Ed) of water at different adsorption sites on the Ru (002), RuCo (002) and RuCo@GNO surfaces(C) [ 45], optimized structures of the intermediates formed in each step of the overall associative ORR sequence on MnPc/GQD: OOH *(D), O *(E), OH *(F), and H2O(G) [ 46](A) Copyright 2019, Elsevier; (B, C) Copyright 2020, the Royal Society of Chemistry; (D—G) Copyright 2018, the Royal Society of Chemistry.
Fig.5 Schematic illustration of the synthesis of the Ru@CQDs electrocatalyst [ 26](A), schematic illustration of the preparation of N⁃GQDs/Co3O4 composite material and its use as a bifunctional electrocatalyst for OER and ORR [ 65](B), commercial Pt/C on a GC electrode in N2⁃saturated 0.1 mol/L KOH, O2⁃saturated 0.1 mol/L KOH, and O2⁃saturated 3 mol/L CH3OH solutions [ 70](C), energy pathways fot electrochemical reduction of coupled CH2+CO to CH3CH2OH and C2H4 at 0 V( vs. SHE)(D), relaxed configurations for selected intermediate states with different numbers of hydrogen atoms introduced(E) [ 74](A) Copyright 2018, John Wiley & Sons, Inc.; (B) Copyright 2017, Elsevier; (C) Copyright 2011, American Chemical Society; (D, E) Copyright 2017, American Chemical Society.
Fig.6 Scheme showing the preparation of a porous carbon from carbon dots and a PAM hydrogel(A), electrochemical performances of NPOCD/HPC and free⁃HPC in a three⁃electrode system: CV curves at a scan rate of 10 mV/s in alkaline(B), acidic(C) and neutral(D) aqueous solutions [ 79]Copyright 2019, John Wiley & Sons, Inc.
Fig.7 Possible growth mechanism for the CDs and subsequently synthesized N⁃PCFs [ 80](A), schematic representation of Mn3O4 and the Mn3O4/CDs composite [ 81](B), the procedure for synthesis of PF⁃GQD@SiNP [ 82](C), schematic illustration of the fabrication process for the N⁃carbon dots pillared GO blocks(N⁃CDGB) [ 83](D)(A) Copyright 2019, American Chemical Society; (B) Copyright 2015, the Royal Society of Chemistry; (C) Copyright 2016, Elsevier; (D) Copyright 2018, John Wiley & Sons, Inc.
1 | Wu H., Lu S., Yang B., Acc. Mater. Res., 2022, 3, 319—330 |
2 | Chang J., Yu C., Song X., Tan X., Ding Y., Zhao Z., Qiu J., Angew. Chem. Int. Ed., 2021, 60, 3587—3595 |
3 | Chang J., Song X., Yu C., Yu J., Ding Y., Yao C., Zhao Z., Qiu J., Adv. Funct., 2020, 30, 2006270 |
4 | Qiu H., Xue M., Shen C., Zhang Z., Guo W., Adv. Mater., 2019, 31, 1803772 |
5 | Kroto H. W., Heath J. R., O’Brien S. C., Curl R. F., Smalley R. E., Nature, 1985, 318, 162—163 |
6 | Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6, 183—191 |
7 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306, 666—669 |
8 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126, 12736—12737 |
9 | Xia C., Zhu S., Feng T., Yang M., Yang B., Adv. Sci., 2019, 6, 1901316 |
10 | Guo R., Li L., Wang B., Xiang Y., Zou G., Zhu Y., Hou H., Ji X., Energy Storage Materials, 2021, 37, 8—39 |
11 | Cheng Y., Song H., Yu J., Chang J., Waterhouse G. I. N., Tang Z., Yang B., Lu S., Chinese J. Catal., 2022, 43, 2443—2452 |
12 | Ding P., Song H., Chang J., Lu S., Nano Res., 2022, 15, 7063—7070 |
13 | Chang J., Song X., Yu C., Huang H., Hong J., Ding Y., Huang H., Yu J., Tan X., Zhao Z., Qiu J., Nano Energy, 2020, 69, 104377 |
14 | Ai L., Shi R., Yang J., Zhang K., Zhang T., Lu S., Small, 2021, 17, 2007523 |
15 | Wu H., Huang Q., Shi Y., Chang J., Lu S., Nano Res., 2023, https://doi.org/10.1007/s12274⁃023⁃5502⁃8 |
16 | Wang Y. H., Li R. Q., Li H. B., Huang H. L., Guo Z. J., Chen H. Y., Zheng Y., Qu K. G., Rare Metals, 2021, 40, 1040—1047 |
17 | Ma X., Zhang X. Y., Yang M., Xie J. Y., Lv R. Q., Chai Y. M., Dong B., Rare Metals, 2021, 40, 1048—1055 |
18 | Zhu Y. G., Shang C. Q., Wang Z. Y., Zhang J. Q., Yang M. Y., Cheng H., Lu Z. G., Rare Metals, 2021, 40, 90—95 |
19 | Li L., Zhang Z. C., Rare Metals, 2022, 41, 3943—3945 |
20 | Chang J., Yu C., Song X., Han X., Ding Y., Tan X., Li S., Xie Y., Zhao Z., Qiu J., Nano Energy, 2021, 89, 106332 |
21 | Liu J., Liu Y., Liu N., Han Y., Zhang X., Huang H., Lifshitz Y., Lee S. T., Zhong J., Kang Z., Science, 2015, 347, 970—974 |
22 | Guo S., Zhao S., Wu X., Li H., Zhou Y., Zhu C., Yang N., Jiang X., Gao J., Bai L., Liu Y., Lifshitz Y., Lee S. T., Kang Z., Nat. Commun., 2017, 8, 1828 |
23 | Xia C., Qiu Y., Xia Y., Zhu P., King G., Zhang X., Wu Z., Kim J. Y., Cullen D. A., Zheng D., Li P., Shakouri M., Heredia E., Cui P., Alshareef H. N., Hu Y., Wang H., Nat. Chem., 2021, 13, 887—894 |
24 | Li W., Liu Y., Wang B., Song H., Liu Z., Lu S., Yang B., Chinese Chemical Letters, 2019, 30, 2323—2327 |
25 | Liu Y., Li X., Zhang Q., Li W., Xie Y., Liu H., Shang L., Liu Z., Chen Z., Gu L., Tang Z., Zhang T., Lu S., Angew. Chem. Int. Ed., 2020, 59, 1718—1726 |
26 | Li W., Liu Y., Wu M., Feng X., Redfern S. A. T., Shang Y., Yong X., Feng T., Wu K., Liu Z., Li B., Chen Z., Tse J. S., Lu S., Yang B., Adv. Mater., 2018, 30, 1800676 |
27 | Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6, 2179—2195 |
28 | Brumbaugh J., Schleifenbaum A., Gasch A., Sattler M., Schultz C., J. Am. Chem. Soc., 2006, 128, 24—25 |
29 | Zhou J., Booker C., Li R., Zhou X., Sham T. K., Sun X., Ding Z., J. Am. Chem. Soc., 2007, 129, 744—745 |
30 | Peng J., Gao W., Gupta B. K., Liu Z., Romero⁃Aburto R., Ge L., Song L., Alemany L. B., Zhan X., Gao G., Vithayathil S. A., Kaipparettu B. A., Marti A. A., Hayashi T., Zhu J. J., Ajayan P. M., Nano Lett., 2012, 12, 844—849 |
31 | Hu S., Liu J., Yang J., Wang Y., Cao S., J. Nanopart. Res., 2011, 13, 7247—7252 |
32 | Cui L., Ren X., Wang J., Sun M., Materials Today Nano, 2020, 12, 100091 |
33 | Chao⁃Mujica F. J., Garcia⁃Hernández L., Camacho⁃López S., Camacho⁃López M., Camacho⁃López M. A., Reyes Contreras D., Pérez⁃Rodríguez A., Peña⁃Caravaca J. P., Páez⁃Rodríguez A., Darias⁃Gonzalez J. G., Hernandez⁃Tabares L., Arias de Fuentes O., Prokhorov E., Torres⁃Figueredo N., Reguera E., Desdin⁃García L. F., J. Appl. Phys., 2021, 129, 163301 |
34 | Zhu S., Meng Q., Wang L., Zhang J., Song Y., Jin H., Zhang K., Sun H., Wang H., Yang B., Angew. Chem., 2013, 125, 4045—4049 |
35 | Liao H., Ran Y., Zhong J., Li J., Li M., Yang H., Environ. Res., 2022, 215, 114366 |
36 | Medeiros T. V. de., Manioudakis J., Noun F., Macairan J. R., Victoria F., Naccache R., J. Mater. Chem. C, 2019, 7, 7175—7195 |
37 | Jiang L., Ding H., Lu S., Geng T., Xiao G., Zou B., Bi H., Angew. Chem. Int. Ed., 2020, 59, 9986—9991 |
38 | Yadov R. M., Li Z., Zhang T., Sahin O., Roy S., Gao G., Guo H., Vajtai R., Wang L., Ajayan P. M., Wu J., Adv. Mater., 2022, 34, 2105690 |
39 | Tam T. V., Kang S. G., Babu K. F., Oh E. S., Lee S. G., Choi W. M., J. Mater. Chem. A, 2017, 5, 10537—10543 |
40 | Hu C., Yu C., Li M., Wang X., Dong Q., Wang G., Qiu J., Chem. Commun., 2015, 51, 3419—3422 |
41 | Wu J., Ma S., Sun J., Gold J. I., Tiwary C., Kim B., Zhu L., Chopra N., Odeh I. N., Vajtai R., Yu A. Z., Luo R., Lou J., Ding G., Kenis P. J. A., Ajayan P. M., Nat. Commun., 2016, 7, 13869 |
42 | Tian J., Chen J., Liu J., Tian Q., Chen P., Nano Energy, 2018, 48, 284—291 |
43 | Yu J., Song H., Li X., Tang L., Tang Z., Yang B., Lu S., Adv. Funct., 2021, 31, 2107196 |
44 | Liu Y., Yang Y., Peng Z., Liu Z., Chen Z., Shang L., Lu S., Zhang T., Nano Energy, 2019, 65, 104023 |
45 | Feng T., Yu G., Tao S., Zhu S., Ku R., Zhang R., Zeng Q., Yang M., Chen Y., Chen W., Chen W., Yang B., J. Mater. Chem. A, 2020, 8, 9638—9645 |
46 | Pham N. N. T., Park J. S., Kim H. T., Kim H. J., Son Y. A., Kang S. G., Lee S. G., New J. Chem., 2018, 43, 348—355 |
47 | Zhu S., Song Y., Wang J., Wan H., Zhang Y., Ning Y., Yang B., Nano Today, 2017, 13, 10—14 |
48 | Tang C., Zhang Q., Adv. Mater., 2017, 29, 1604103 |
49 | Liu W. W., Feng Y. Q., Yan X. B., Chen J. T., Xue Q. J., Adv. Funct., 2013, 23, 4111—4122 |
50 | Duan J., Chen S., Jaroniec M., Qiao S. Z., ACS Catal., 2015, 5, 5207—5234 |
51 | Fang L., Jiang Z., Xu H., Liu L., Guan Y., Gu X., Wang Y., J. Catal., 2018, 357, 238—246 |
52 | Wu X., Zhao J., Guo S., Wang L., Shi W., Huang H., Liu Y., Kang Z., Nanoscale, 2016, 8, 17314—17321 |
53 | Pei Y., Cheng Y., Chen J., Smith W., Dong P., Ajayan P. M., Ye M., Shen J., J. Mater. Chem. A, 2018, 6, 23220—23243 |
54 | Wan C., Regmi Y. N., Leonard B. M., Angew. Chem. Int. Ed., 2014, 53, 6407—6410 |
55 | Park H., Encinas A., Scheifers J. P., Zhang Y., Fokwa B. P. T., Angew. Chem. Int. Ed., 2017, 56, 5575—5578 |
56 | Hu C., Dai Q., Dai L., Cell Reports Physical Science, 2021, 2, 100328 |
57 | Wang X., Vasileff A., Jiao Y., Zheng Y., Qiao S. Z., Adv. Mater., 2019, 31, 1803625 |
58 | Song L., Zhang X., Zhu S., Xu Y., Wang Y., Carbon, 2022, 199, 63—69 |
59 | Wang L., Wu X., Guo S., Han M., Zhou Y., Sun Y., Huang H., Liu Y., Kang Z., J. Mater. Chem. A, 2017, 5, 2717—2723 |
60 | Liu Z., Li B., Feng Y., Jia D., Li C., Zhou Y., Small Methods, 2022, 6, 2200637 |
61 | Liu Z., Li B., Feng Y., Jia D., Li C., Sun Q., Zhou Y., Small, 2021, 17, 2102496 |
62 | Walter M. G., Warren E. L., McKone J. R., Boettcher S. W., Mi Q., Santori E. A., Lewis N. S., Chem. Rev., 2010, 110, 6446—6473 |
63 | Huang C., Ouyang T., Zou Y., Li N., Liu Z. Q., J. Mater. Chem. A, 2018, 6, 7420—7427 |
64 | Wei G., He J., Zhang W., Zhao X., Qiu S., An C., Inorg. Chem., 2018, 57, 7380—7389 |
65 | Muthurasu A., Sheen Mers S. V., Ganesh V., International Journal of Hydrogen Energy, 2018, 43, 4726—4737 |
66 | Datta A., Kapri S., Bhattacharyya S., J. Mater. Chem. A, 2016, 4, 14614—14624 |
67 | Zhao M., Zhang J., Xiao H., Hu T., Jia J., Wu H., Chem. Commun., 2019, 55, 1635—1638 |
68 | Huang D., Chen Y., Cheng M., Lei L., Chen S., Wang W., Liu X., Small, 2021, 17, 2002998 |
69 | Wang M., Fang Z., Zhang K., Fang J., Qin F., Zhang Z., Li J., Liu Y., Lai Y., Nanoscale, 2016, 8, 11398—11402 |
70 | Li Y., Zhao Y., Cheng H., Hu Y., Shi G., Dai L., Qu L., J. Am. Chem. Soc., 2012, 134, 15—18 |
71 | Zhang P., Wei J. S., Chen X. B., Xiong H. M., J. Colloid. Interf. Sci., 2019, 537, 716—724 |
72 | Cheng R., Jiang M., Li K., Guo M., Zhang J., Ren J., Meng P., Li R., Fu C., Chemical Engineering Journal, 2021, 425, 130603 |
73 | Wu J., Wen C., Zou X., Jimenez J., Sun J., Xia Y., Fonseca Rodrigues M. T., Vinod S., Zhong J., Chopra N., Odeh I. N., Ding G., Lauterbach J., Ajayan P. M., ACS Catal., 2017, 7, 4497—4503 |
74 | Zou X., Liu M., Wu J., Ajayan P. M., Li J., Liu B., Yakobson B. I., ACS Catal., 2017, 7, 6245—6250 |
75 | Chen C., Yan X., Liu S., Wu Y., Wan Q., Sun X., Zhu Q., Liu H., Ma J., Zheng L., Wu H., Han B., Angew. Chem. Int. Ed., 2020, 59, 16459—16464 |
76 | Fu J., Wang Y., Liu J., Huang K., Chen Y., Li Y., Zhu J. J., ACS Energy Lett., 2018, 3, 946—951 |
77 | Zheng S., Wu Z. S., Wang S., Xiao H., Zhou F., Sun C., Bao X., Cheng H. M., Energy Storage Materials, 2017, 6, 70—97 |
78 | Li Z., Cao L., Qin P., Liu X., Chen Z., Wang L., Pan D., Wu M., Carbon, 2018, 139, 67—75 |
79 | Wei J. S., Ding C., Zhang P., Ding H., Niu X. Q., Ma Y. Y., Li C., Wang Y. G., Xiong H. M., Adv. Mater., 2019, 31, 1806197 |
80 | Zhang X., Zhang Z., Hu F., Li D., Zhou D., Jing P., Du F., Qu S., ACS Sustainable Chem. Eng., 2019, 7, 9848—9856 |
81 | Jing M., Wang J., Hou H., Yang Y., Zhang Y., Pan C., Chen J., Zhu Y., Ji X., J. Mater. Chem. A, 2015, 3, 16824—16830 |
82 | Kong L. J., Yang Y. Q., Li R. Y., Li Z. J., Electronchimica Acta, 2016, 198, 144—155 |
83 | Liu Z., Zhang L., Sheng L., Zhou Q., Wei T., Feng J., Fan Z., Advanced Energy Materials, 2018, 8, 1802042 |
84 | Li L., Li Y., Ye Y., Guo R., Wang A., Zou G., Hou H., Ji X., ACS Nano, 2021, 15, 6872—6885 |
85 | Zhang E., Jia X., Wang B., Wang J., Yu X., Lu B., Advanced Science, 2020, 7, 2000470 |
[1] | 杜磊, 刘兆清. 非贵金属催化剂在羟甲基糠醛电氧化增值中的应用[J]. 高等学校化学学报, 2023, 44(5): 20220710. |
[2] | 富忠恒, 陈翔, 姚楠, 余乐耕, 沈馨, 张睿, 张强. 固态电解质锂离子输运机制研究进展[J]. 高等学校化学学报, 2023, 44(5): 20220703. |
[3] | 巴迪迪, 赵海洲, 张志明, 于良民. 电纺聚苯胺涂层表面浸润性和表面荷电对微生物附着的影响[J]. 高等学校化学学报, 2023, 44(4): 20220615. |
[4] | 孙竹梅, 傅杰, 李鑫, 王海芳, 卢静, 童天星, 朱明飞, 舒余德, 王云燕. 电吸附除氯过程的电化学阻抗谱及动力学研究[J]. 高等学校化学学报, 2023, 44(2): 20220528. |
[5] | 符芳媚, 徐梦如, 梁梓珊, 黄斯锐, 李晖, 张浩然, 李唯, 郑明涛, 雷炳富. 共轭尺寸和表面氧化协同触发的红色荧光碳点用于有机溶剂中痕量水的检测[J]. 高等学校化学学报, 2023, 44(2): 20220464. |
[6] | 胡诗颖, 沈佳艳, 韩峻山, 郝婷婷, 李星. CoO纳米颗粒/石墨烯纳米纤维复合材料的制备及电化学性能[J]. 高等学校化学学报, 2023, 44(2): 20220462. |
[7] | 邓园, 王思, 丰海松, 张欣. Pd催化糠醛加氢反应中溶剂依赖效应的理论计算[J]. 高等学校化学学报, 2023, 44(2): 20220486. |
[8] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
[9] | 江博文, 陈敬轩, 成永华, 桑微, 寇宗魁. 单原子材料在电化学生物传感中的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220334. |
[10] | 郭程, 张威, 唐云. 有序介孔材料: 历史、 现状与发展趋势[J]. 高等学校化学学报, 2022, 43(8): 20220167. |
[11] | 王瑞娜, 孙瑞粉, 钟添华, 池毓务. 大尺寸石墨烯量子点组装体的制备及电化学发光性能[J]. 高等学校化学学报, 2022, 43(8): 20220161. |
[12] | 李玉龙, 谢发婷, 管燕, 刘嘉丽, 张贵群, 姚超, 杨通, 杨云慧, 胡蓉. 基于银离子与DNA相互作用的比率型电化学传感器用于银离子的检测[J]. 高等学校化学学报, 2022, 43(8): 20220202. |
[13] | 王丽君, 李欣, 洪崧, 詹新雨, 王迪, 郝磊端, 孙振宇. 调节氧化镉-炭黑界面高效电催化CO2还原生成CO[J]. 高等学校化学学报, 2022, 43(7): 20220317. |
[14] | 李祎頔, 田晓春, 李俊鹏, 陈立香, 赵峰. 半导体-微生物界面电子传递及其在环境领域的应用[J]. 高等学校化学学报, 2022, 43(6): 20220089. |
[15] | 龚妍熹, 王建兵, 柴歩瑜, 韩元春, 马云飞, 贾超敏. 钾掺杂g-C3N4薄膜光阳极的制备及光电催化氧化降解水中双氯芬酸钠性能[J]. 高等学校化学学报, 2022, 43(6): 20220005. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||