高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (12): 20220683.doi: 10.7503/cjcu20220683
卢美如, 张宏宇, 石百媚, 孙茂忠, 徐丽广, 胥传来, 匡华()
收稿日期:
2022-10-22
出版日期:
2022-12-10
发布日期:
2022-11-27
通讯作者:
匡华
E-mail:kuangh@jiangnan.edu.cn
基金资助:
LU Meiru, ZHANG Hongyu, SHI Baimei, SUN Maozhong, XU Liguang, XU Chuanlai, KUANG Hua()
Received:
2022-10-22
Online:
2022-12-10
Published:
2022-11-27
Contact:
KUANG Hua
E-mail:kuangh@jiangnan.edu.cn
Supported by:
摘要:
手性无机纳米结构不仅形貌和结构可调控、 易于表面功能化修饰, 而且光学性质独特, 在生物领域的应用上展现了很大的优异性. 本文综述了近年来手性纳米技术在生物医学领域的研究进展, 重点介绍了手性金属和手性半导体纳米结构的合成策略、 圆二色效应、 光手性机制及在生物成像、 生物传感、 肿瘤以及神经退行性疾病等医学领域的应用. 手性纳米材料的研究丰富了生物化学的纳米技术手段, 促进了肿瘤等重大疾病诊断与治疗技术的进步, 推动了手性在生命科学中的发展, 鼓励了研究者对这一新兴领域的持续探索与挑战.
中图分类号:
TrendMD:
卢美如, 张宏宇, 石百媚, 孙茂忠, 徐丽广, 胥传来, 匡华. 手性纳米材料: 生物成像、 生物传感与治疗. 高等学校化学学报, 2022, 43(12): 20220683.
LU Meiru, ZHANG Hongyu, SHI Baimei, SUN Maozhong, XU Liguang, XU Chuanlai, KUANG Hua. Chiral Nanomaterials: Bioimaging, Biosensing and Therapeutics. Chem. J. Chinese Universities, 2022, 43(12): 20220683.
Fig.1 Morphology and spectroscopy of chiral nanoparticles(A) Surface ligand introduction and circular dichroism spectra of chiral tungsten oxide nanoparticles[21]; (B) surface ligand introduction and circular dichroism spectra of chiral cadmium selenide quantum dots[20]; (C) morphology, spectroscopy, and light transmitting characteristics of L- or D-cysteine-capped chiral Co3O4 nanoparticles[3]; (D) morphology and circular dichroism spectra of truncated tetrahedral shape CdTe nanoparticles[15]; (E) three-dimensional plasmonic helicoids controlled by L- or D-cysteine and the morphological development oriented in the opposite directions[4]; (F) asymmetric morphology and circular dichroism spectra of strong chiral gold nanoparticles[17].(A) Copyright 2017, American Chemical Society; (B) Copyright 2013, American Chemical Society; (C) Copyright 2018, American Association for the Advancement of Science; (D) Copyright 2018, Springer Nature; (E) Copyright 2018, Springer Nature; (F) Copyright 2022, Springer Nature.
Fig.2 Structure and spectroscopy of chiral nano⁃assemblies(A) Up-conversion nanoparticle inserted Au@Ag yolk-shell nanopyramid[25]; (B) nanopyramid self-assembled with gold nanoparticles and up-conversion nanoparticles[26]; (C) illumination of CdTe quantum dots with right- and left-handed circularly polarized light induces the formation of right- and left-handed twisted nanoribbons, respectively[32]; (D) helical assemblies of gold nanorods with human islet amyloid polypeptides[29].(A) Copyright 2018, Springer Nature; (B) Copyright 2016, American Chemical Society; (C) Copyright 2015, Springer Nature; (D) Copyright 2021, American Association for the Advancement of Science.
Fig.3 Bioimaging and sensing of chiral nanostructures(A) Chiral Au(core)-silver(shell) satellite nanostructures for CT and PA imaging in the tumor-bearing mice[34]; (B) magneto-chiral cobalt hydroxide nanoparticles for ROS detection in mouse tumor through fluorescence and MRI dual imaging[37]; (C) the nanostructures of up-conversion nanoparticle(core) and a zeolitic imidazolate framework-8(ZIF)(shell) encapsulated with chiral NiS x nanoparticles for in vitro and in vivo ROS monitoring based on up-conversion luminescence imaging[14]; (D) chiral Au-upconversion heterodimer for quantitative detection drug-resistant bacteria[39].(A) Copyright 2017, Wiley-VCH; (B) Copyright 2022, American Chemical Society; (C) Copyright 2019, American Chemical Society; (D) Copyright 2018, Wiley-VCH.
Fig.4 Applications of chiral nanoparticles in tumor therapy(A) Combination of photodynamic and photothermal effects of chiral Cu2-x S nanocrystals promotes tumor cell death[43]; (B) chiral Au(core)-silver(shell) satellite nanostructures for tumor photodynamic therapy[34]; (C) strong chiral gold nano-adjuvants enhancing the humoral immunity and cellular immunity for tumor immunotherapy and prevention[53].(A) Copyright 2020, the Royal Society of Chemistry; (B) Copyright 2017, Wiley-VCH; (C) Copyright 2022, Wiley-VCH.
Fig.5 Application of chiral nanomaterials in neurodegenerative disease treatment(A) The inhibition and disassembly effects of chiral Fe x Cu y Se nanoparticles on β-amyloid aggregation in an AD mice model[16]; (B) effect of chiral Au NPs on β-amyloid fibrillization both in vitro and in vivo[60]; (C) chiral Cu x O nanoclusters for eliminating reactive oxygen species against oxidative-stress-mediated neurotoxicity in PD mice and rescuing the memory loss of mice with PD[59].(A) Copyright 2020, Wiley-VCH; (B) Copyright 2020, Springer Nature; (C) Copyright 2019, American Chemical Society.
1 | Xing P. Y., Zhao Y. L., Acc. Chem. Res., 2018, 51(9), 2324—2334 |
2 | Lebreton1 G., Geminard C., Lapraz F., Pyrpassopoulos S., Cerezo D., Speder P., Ostap E. M., Noselli S., Science, 2018, 362(23), 949—952 |
3 | Yeom J., Santos U. S., Chekini M., Cha M., de Moura A. F., Kotov N. A., Science, 2018, 359(6373), 309—314 |
4 | Lee H. E., Ahn H. Y., Mun J., Lee Y. Y., Kim M., Cho N. H., Chang K., Kim W. S., Rho J., Nam K. T., Nature, 2018, 556(7701), 360—365 |
5 | An S. G., Hao A.Y., Xing P. Y., Angew. Chem. Int. Ed., 2021, 60(18), 9902—9912 |
6 | Zhao X. L., Zang S. Q., Chen X. Y., Chem. Soc. Rev., 2020, 49(8), 2481—2503 |
7 | Ben⁃Moshe A., Maoz B. M., Govorov A. O., Markovich G., Chem. Soc. Rev., 2013, 42(16), 7028—7041 |
8 | Huang Y. Y., Fu Y. T., Li M. T., Jiang D. W., Kutyreff C. J., Engle J. W., Lan X. L., Cai W. B., Chen T. F., Angew. Chem. Int. Ed., 2020, 59(11), 4406—4414 |
9 | Pu F., Ren J., Qu X. G., Chem. Soc. Rev., 2018, 47(4), 1285—1306 |
10 | Dou X. Q., Mehwish N., Zhao C. L., Liu J. Y., Xing C., Feng C. L., Acc. Chem. Res., 2020, 53(4), 852—862 |
11 | Kuang H., Yong Q. Q., Liu L. Q., Hu Y. M., Song S. S., Xu C. L., J. Food Science and Biotechnology, 2013, 32(10), 1049—1056 |
匡华, 勇倩倩, 刘丽强, 胡拥明, 宋珊珊, 胥传来. 食品与生物技术学报, 2013, 32(10), 1049—1056 | |
12 | Zhang X., Kuang H., Xu L. G., Ma W., Liu L. Q., Xu C. L., J. Food Science and Biotechnology 2013, 32(12), 1293—1298 |
张勋, 匡华, 徐丽广, 马伟, 刘丽强, 胥传来. 食品与生物技术学报, 2013, 32(12), 1293—1298 | |
13 | Wang G. Y., Hao C. L., Ma W., Qu A. H., Chen C., Xu J. J., Xu C. L., Kuang H., Xu L. G., Adv. Mater., 2021, 33(38), e2102337 |
14 | Hao C. L., Wu X. L., Sun M. Z., Zhang H. Y., Yuan A. M., Xu L. G., Xu C. L., Kuang H., J. Am. Chem. Soc., 2019, 141(49), 19373—19378 |
15 | Sun M. Z., Xu L. G., Qu A. H., Zhao P., Hao T. T., Ma W., Hao C. L., Wen X., Nat. Chem., 2018, 10(8), 821—830 |
16 | Zhang H. Y., Hao C. L., Qu A. H., Sun M. Z., Xu L. G., Xu C. L., Kuang H., Angew. Chem. Int. Ed., 2020, 59(18), 7131—7138 |
17 | Xu L. G., Wang X. X., Wang W. W., Sun M. Z., Choi W. J., Kim J. Y., Hao C. L., Li S., Qu A. H., Lu M. R., Wu X. L., Colombari F. M., Gomes W. R., Blanco A. L., de Moura A. F., Guo X., Kuang H., Kotov N. A., Xu C. L., Nature, 2022, 601(7893), 366—373 |
18 | Ma W., Xu L. G., de Moura A. F., Wu X. L., Kuang H., Xu C. L., Kotov N. A., Chem. Rev., 2017, 117(12), 8041—8093 |
19 | Cheng J. J., Hao J. J., Liu H. C., Li J. G., Li J. Z., Zhu X., Lin X. D., Wang K., He T. C., ACS Nano, 2018, 12(6), 5341—5350 |
20 | Tohgha U., Deol K. K., Porter A. G., Bartko S. G., Choi J. K., Leonard B. M., Varga K., Kubelka J., Muller G., Balaz M., ACS Nano, 2013, 7(12), 11094—11102 |
21 | Jiang S., Chekini M., Qu Z. B., Wang Y. C., Yeltik A., Liu Y. G., Kotlyar A., Zhang T. Y., Li B., Demir H. V., Kotov N. A., J. Am. Chem. Soc., 2017, 139(39), 13701—13712 |
22 | Jiang W. F., Qu Z. B., Kumar P., Vecchio D., Wang Y. F., Ma Y., Bahng J. H., Bernardino K., Gomes W. R., Colombari F. M., Lozada⁃Blanco A., Veksler M., Marino E., Simon A., Murray C., Muniz S. R., de Moura A. F., Kotov N. A., Science, 2020, 368(6491), 642—648 |
23 | Qiu M., Zhang L., Tang Z.X., Jin W., Qiu C. W., Lei D. Y., Adv. Funct. Mater., 2018, 28(45), 1803147 |
24 | Kuzyk A., Schreiber R., Fan Z. Y., Pardatscher G., Roller E. M., Hogele A., Simmel F. C., Govorov A. O., Liedl T., Nature, 2012, 483(7389), 311—314 |
25 | Sun M. Z., Hao T. T., Li X. Y., Qu A. H., Xu L. G., Hao C. L., Xu C. L., Kuang H., Nat. Commun., 2018, 9(1), 4494 |
26 | Li S., Xu L. G., Ma W., Wu X. L., Sun M. Z., Kuang H., Wang L. B., Kotov N. A., Xu C. L., J. Am. Chem. Soc., 2016, 138(1), 306—312 |
27 | Mokashi⁃Punekar S., Zhou Y., Brooks S. C., Rosi N. L., Adv. Mater., 2020, 32(41), e1905975 |
28 | Liljestrom V., Ora A., Hassinen J., Rekola H. T., Nonappa N., Heilala M., Hynninen V., Joensuu J. J., Ras R. H. A., Torma P., Ikkala O., Kostiainen M. A., Nat. Commun., 2017, 8(1), 671 |
29 | Lu J., Xue Y., Bernardino K., Zhang N. N., Gomes W. R., Ramesar N. S., Liu S. H., Hu Z., Sun T. M., de Moura A. F., Kotov N. A., Science, 2021, 371(6536), 1368—1374 |
30 | Lv J. W., Ding D. F., Yang X., Hou K., Miao X., Wang D., Kou B., Huang L., Tang Z., Angew. Chem. Int. Ed., 2019, 58(23), 7783—7787 |
31 | Saito K., Tatsuma T., Nano Lett., 2018, 18(5), 3209—3212 |
32 | Yeom J., Yeom B., Chan H., Smith K. W., Dominguez⁃Medina S., Bahng J. H., Zhao G., Chang W. S., Chang S. J., Chuvilin A., Melnikau D., Rogach A. L., Zhang P. J., Link S., Kral P., Kotov N. A., Nat. Mater., 2015, 14(1), 66—72 |
33 | Weber J., Beard P. C., Bohndiek S. E., Nat. Meth., 2016, 13(8), 639—650 |
34 | Gao F. L., Sun M. Z., Ma W., Wu X. L., Liu L. Q., Kuang H., Xu C. L., Adv. Mater., 2017, 29(18), 1606864 |
35 | Grippin A. J., Wummer B., Wildes T., Dyson K., Trivedi V., Yang C. L., Sebastian M., Mendez⁃Gomez H. R., Padala S., Grubb M., Fillingim M., Monsalve A., Sayour E. J., Dobson J., Mitchell D. A., ACS Nano, 2019, 13(12), 13884—13898 |
36 | Zhou Z. J., Yang L. J., Gao J. H., Chen X. Y., Adv. Mater., 2019, 31(8), e1804567 |
37 | Li C., Li S., Zhao J., Sun M. Z., Wang W. W., Lu M. R., Qu A. H. ,Hao C. L., Chen C., Xu C. L., Kuang H., Xu L. G., J. Am. Chem. Soc., 2022, 144(4), 1580—1588 |
38 | Dong H. F., Lei J. P., Ju H. X., Zhi F., Wang H., Guo W. J., Zhu Z., Yan F., Angew. Chem. Int. Ed., 2012, 51(19), 4607—4612 |
39 | Sun M. Z., Qu A. H., Hao C. L., Wu X. L., Xu L. G., Xu C. L., Kuang H., Adv. Mater., 2018, 30(50), e1804241 |
40 | Wang H. Y., Pan X. T., Wang X. T., Wang W. W., Huang Z. J., Gu K., Liu S., Zhang F. R., Shen H. Y., Yuan Q. P., Ma J., Yuan W., Liu H. Y., ACS Nano, 2020, 14(3), 2847—2859 |
41 | Doughty A. C. V., Hoover A. R., Layton E., Murray C. K., Howard E. W., Chen W. R., Materials, 2019, 12(5), 779 |
42 | He X. L., Hao Y., Chu B. Y., Yang Y., Sun A., Shi K., Yang C. L., Zhou K., Qu Y., Li H., Qian Z. Y., Nano Today, 2021, 39, 101174 |
43 | Wang Y., Xia Y. S., J. Mater. Chem. B, 2020, 8(35), 7921—7930 |
44 | Jia T. T., Li B. J., Yang G., Hua Y., Liu J. Q., Ma W., Zang S. Q., Chen X. Y., Zhao X. L., Nano Today, 2021, 39, 101222 |
45 | Sun M. Z., Xu L. G., Bahng J. H., Kuang H., Alben S., Kotov N. A., Xu C. L., Nat. Commun., 2017, 8(1), 1847 |
46 | Kong X. T., Khosravi Khorashad L., Wang Z. M., Govorov A. O., Nano Lett., 2018, 18(3), 2001—2008 |
47 | Sang Y. T., Han J. L., Zhao T. H., Duan P. F., Liu M. H., Adv. Mater., 2020, 32(41), e1900110 |
48 | Chang M. Y., Hou Z. Y., Wang M., Li C. X., Lin J., Adv. Mater., 2021, 33(4), e2004788 |
49 | Gong N. Q., Zhang Y. X., Teng X. C., Wang Y. C., Huo S. D., Qing G. C., Ni Q. K., Li X. L., Wang J. J., Ye X. X., Zhang T. B., Chen S. Z., Wang Y. J., Yu J., Wang P. C., Gan Y. L., Zhang J. C., Mitchell M. J., Li J. H., Liang X. J., Nat. Nanotechnol., 2020, 15(12), 1053—1064 |
50 | Liu C., Liu X., Xiang X. C., Pang X., Chen S. Y., Zhang Y. M., Ren E., Zhang L. L., Liu X., Lv P., Wang X. Y., Luo W. X., Xia N. S., Chen X. Y., Liu G., Nat. Nanotechnol., 2022, 17(5), 531—540 |
51 | Xu J., Lv J., Zhuang Q., Yang Z. J., Cao Z. Q., Xu L. G., Pei P., Wang C. Y., Wu H. F., Dong Z. L., Chao Y., Wang C., Yang K., Peng R., Cheng Y. Y., Liu Z., Nat. Nanotechnol., 2020, 15(12), 1043—1052 |
52 | Sun X. Q., Zhang Y., Li J. Q., Park K. S., Han K., Zhou X. W., Xu Y., Nam J., Xu J., Shi X. Y., Wei L., Lei Y. L., Moon J. J., Nat. Nanotechnol., 2021, 16(11), 1260—1270 |
53 | Wang W. W., Zhao J., Hao C. L., Hu S. D., Chen C., Cao Y., Xu Z. Y., Guo J., Xu L. G., Sun M. Z., Xu C. L., Kuang H., Adv. Mater., 2022, 34(16), e2109354 |
54 | Heneka M. T., McManus R. M., Latz E., Nat. Rev. Neurosci., 2018, 19(10), 610—621 |
55 | Ising C., Venegas C., Zhang S. S., Scheiblich H., Schmidt S. V., Vieira⁃Saecker A., Schwartz S., Albasset S., McManus R. M., Tejera D., Griep A., Santarelli F., Brosseron F., Opitz S., Stunden J., Merten M., Kayed R., Golenbock D. T., Blum D., Latz E., Buee L., Heneka M. T., Nature, 2019, 575(7784), 669—673 |
56 | Uhlmann R. E., Rother C., Rasmussen J., Schelle J., Bergmann C., Ullrich Gavilanes E. M., Fritschi S. K., Buehler A., Baumann F., Skodras A., Al⁃Shaana R., Beschorner N., Ye L., Kaeser S. A., Obermuller U., Christensen S., Kartberg F., Stavenhagen J. B., Rahfeld J. U., Cynis H., Qian F., Weinreb P. H., Bussiere T., Walker L. C., Staufenbiel M., Jucker M., Nat. Neurosci., 2020, 23(12), 1580—1588 |
57 | Xie C. L., Zhuang X. X., Niu Z. M., Ai R., Lautrup S., Zheng S. J., Jiang Y. H., Han R. Y., Gupta T. S., Cao S. Q., Lagartos⁃Donate M.J., Cai C. Z., Xie L. M., Caponio D., Wang W. W., Schmauck⁃Medina T., Zhang J. Y., Wang H. L., Lou G. F., Xiao X. L., Zheng W. H., Palikaras K., Yang G., Caldwell K. A., Caldwell G. A., Shen H. M., Nilsen H., Lu J. H., Fang E. F., Nat. Biomed Eng., 2022, 6(1), 76—93 |
58 | Yuan J. X., Liu H. H., Zhang H., Wang T. T., Zheng Q., Li Z., Adv. Mater., 2022, 34(11), e2108435 |
59 | Hao C. L., Qu A. H., Xu L. G., Sun M. Z., Zhang H. Y., Xu C. L., Kuang H., J. Am. Chem. Soc., 2019, 141(2), 1091—1099 |
60 | Hou K., Zhao J., Wang H., Li B., Li K. X., Shi X. H., Wan K. W., Ai J., Lv J. W., Wang D. W., Huang Q. X., Wang H. Y., Cao Q., Liu S. Q., Tang Z. Y., Nat. Commun., 2020, 11(1), 4790 |
[1] | 江博文, 陈敬轩, 成永华, 桑微, 寇宗魁. 单原子材料在电化学生物传感中的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220334. |
[2] | 黄秋红, 李文军, 李鑫. 有机催化靛红衍生酮亚胺与噁唑酮的不对称Mannich型加成反应[J]. 高等学校化学学报, 2022, 43(8): 20220131. |
[3] | 刘树威, 晋皓, 尹万忠, 张皓. 用于卵巢癌化疗-光热联合治疗的吉西他滨/聚吡咯复合纳米粒子[J]. 高等学校化学学报, 2022, 43(8): 20220345. |
[4] | 王君旸, 刘争, 张茜, 孙春燕, 李红霞. DNA银纳米簇在功能核酸荧光生物传感器中的应用[J]. 高等学校化学学报, 2022, 43(6): 20220010. |
[5] | 王雪丽, 宋相伟, 解颜宁, 杜妮阳, 王振新. 部分还原氧化石墨烯的制备、 表征及对人宫颈癌HeLa细胞的体外杀伤作用[J]. 高等学校化学学报, 2022, 43(2): 20210595. |
[6] | 姚善昆, 丁伟忠, 吴延平, 陈韵聪, 郭子建. 硫代部花菁类染料生物成像及诊疗的研究进展[J]. 高等学校化学学报, 2022, 43(12): 20220568. |
[7] | 叶卓, 吉墨轩, 刘定斌. 动脉粥样硬化光学成像探针研究进展[J]. 高等学校化学学报, 2022, 43(12): 20220556. |
[8] | 赵恒智, 余方志, 李翔菲, 李乐乐. 基于DNA与上转换纳米颗粒相结合的生物传感与成像研究进展[J]. 高等学校化学学报, 2022, 43(12): 20220626. |
[9] | 张钤, 刘雅薇, 王帆, 刘凯, 张洪杰. 稀土纳米材料在高分辨活体成像及诊疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220552. |
[10] | 唐玉静, 胡敏, 王霞, 王启刚. 载酶纳米催化体系用于疾病诊疗的研究进展[J]. 高等学校化学学报, 2022, 43(12): 20220640. |
[11] | 陈尚钰, 沈清明, 孙鹏飞, 范曲立. 小分子基温敏聚合物纳米粒子的制备及在近红外二区荧光成像与光热治疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220392. |
[12] | 秦该照, 唐明华, 赖亚琳, 袁黎明. 手性金属有机笼MOC-PA作为毛细管电泳手性固定相[J]. 高等学校化学学报, 2022, 43(11): 20220417. |
[13] | 刘苗, 刘瑞波, 刘巴蒂, 钱鹰. 溶酶体靶向吲哚氟硼二吡咯光敏剂的合成、 双光子荧光成像及光动力治疗[J]. 高等学校化学学报, 2022, 43(10): 20220326. |
[14] | 朱兆田, 李圣凯, 宋明慧, 蔡芯琪, 宋志灵, 陈龙, 陈卓. 多功能金属石墨纳米囊的生物医学应用进展[J]. 高等学校化学学报, 2021, 42(9): 2701. |
[15] | 史歌, 徐茜, 代枭, 张洁, 沈军, 宛新华. 芳香取代基结构对螺旋聚乙炔高效液相色谱手性固定相手性识别性能的影响[J]. 高等学校化学学报, 2021, 42(8): 2673. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||