高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (6): 20220010.doi: 10.7503/cjcu20220010
收稿日期:
2022-01-06
出版日期:
2022-06-10
发布日期:
2022-02-08
通讯作者:
孙春燕
E-mail:sunchuny@jlu.edu.cn;hxiali@jlu.edu.cn
作者简介:
李红霞, 女, 博士, 副教授, 主要从事生物传感分析方法建立与食品安全检测方面的研究. E-mail: 基金资助:
WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan(), LI Hongxia(
)
Received:
2022-01-06
Online:
2022-06-10
Published:
2022-02-08
Contact:
SUN Chunyan
E-mail:sunchuny@jlu.edu.cn;hxiali@jlu.edu.cn
Supported by:
摘要:
DNA银纳米簇(DNA-AgNCs)是以DNA为模板, 通过碱基杂环上的N原子与Ag+结合, 用NaBH4将Ag+还原得到的具有荧光性质的新兴纳米探针. 由于DNA-AgNCs具有合成方法简单、 生物相容性好和荧光发射波长可调等优点, 使其在分析检测等领域具有广泛的应用. 本文对DNA-AgNCs的合成和荧光性质两个方面进行了综述, 分类总结了以DNA-AgNCs为无标记荧光探针在功能核酸荧光生物传感器方面的应用, 对其不足与应用潜力进行展望, 以期为未来的研究与应用提供借鉴.
中图分类号:
TrendMD:
王君旸, 刘争, 张茜, 孙春燕, 李红霞. DNA银纳米簇在功能核酸荧光生物传感器中的应用. 高等学校化学学报, 2022, 43(6): 20220010.
WANG Junyang, LIU Zheng, ZHANG Qian, SUN Chunyan, LI Hongxia. Application of DNA Silver Nanoclusters in the Fluorescence Biosensors based on Functional Nucleic Acids. Chem. J. Chinese Universities, 2022, 43(6): 20220010.
Fig.1 The synthesis process of DNA?AgNCs and the binding site of base and Ag+[10](A), schematic illustra?ting the potential sites of interaction between single stranded DNA and silver ions[12](B), a proposed rod?like model of AgNCs, with the neutral core(grey) peripherally surrounded by base?bound Ag+(blue)[13](C), varying the length of the C base leads to AgNCs varying in color[14](D) and varying the length of the C base leads to AgNCs varying in color[15](E)(A) Copyright 2016, the Royal Society of Chemistry; (B) Copyright 2013 MDPI; (C) Copyright 2013, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (D) Copyright 2011, American Chemical Society; (E) Copyright 2014, American Chemical Society.
No. | Characterization methods and abbreviations | Purpose |
---|---|---|
1 | Fluorescence spectrometry(FL) | Fluorescence emission |
2 | Ultraviolet?visible absorption spectrometry(UV?VIS) | Maximum absorption wavelength |
3 | Circular dichroism(CD) | Structural change |
4 | Transmission electron microscopy(TEM) | Morphology and size |
5 | Electrospray ionization mass spectrometry(ESI?MS) | Deterministic chemometrics |
6 | X?ray photoelectron spectroscopy(XPS) | Qualitative and quantitative analysis of elements |
7 | Nuclear magnetic resonance(NMR) | Qualitative analysis of composition and structure |
8 | Energy dispersive spectrometer(EDS) | Element types and contents |
Table 1 Common characterization methods for DNA-AgNCs
No. | Characterization methods and abbreviations | Purpose |
---|---|---|
1 | Fluorescence spectrometry(FL) | Fluorescence emission |
2 | Ultraviolet?visible absorption spectrometry(UV?VIS) | Maximum absorption wavelength |
3 | Circular dichroism(CD) | Structural change |
4 | Transmission electron microscopy(TEM) | Morphology and size |
5 | Electrospray ionization mass spectrometry(ESI?MS) | Deterministic chemometrics |
6 | X?ray photoelectron spectroscopy(XPS) | Qualitative and quantitative analysis of elements |
7 | Nuclear magnetic resonance(NMR) | Qualitative analysis of composition and structure |
8 | Energy dispersive spectrometer(EDS) | Element types and contents |
Fig.2 Schematic diagram of the formation of fluorescent silver nanoclusters on a double?stranded structure(A) Mismatched pairs[24]. Copyright 2011, Wiley?VCH Verlag GmbH & Co. KGaA, Weinheim. (B) Debase site[25]. Copyright 2011, IOP Publishing Ltd. (C) Interstitial site[26]. Copyright 2012, Elseiver B.V.
Fig.3 Schematic diagram of the formation of fluorescent silver nanoclusters on different structures(A) Triple helix [28]. Copyright 2012, Oxford University Press. (B) i?Motif [29]. Copyright 2009, American Chemical Society.(C) G?quadruplex [31]. Copyright 2011, Elsevier B.V. (D) Benzene ring [32]. Copyright 2013, the Royal Society of Chemistry.
Fig.4 Schematic showing red fluorescence enhancement of DNA?AgNCs through proximity with a G?rich overhang and NCB probe design[33](A), schematic diagram of Ag emitter on symbiotic long DNA template model(a)[37] and application(Pb2+[38], b; Hg2+[39], c)(B), schematic illustration of fluorescence switching for Cyt12?AgNCs by adding Ag+[40](C) and schematic illustration of fabrication of DNA?AgNCs and DNA?AgNCs coated with Tween 80(DNA?AgNCs@tween 80) and their application for Cyt c assay[43](D)(A) Copyright 2010, American Chemical Society; (B) a. Copyright 2015, the Royal Society of Chemistry; b. Copyright 2017, the Royal Society of Chemistry; c. Copyright 2018, Elsevier B.V.; (C) Copyright 2015, Elsevier B.V.; (D) Copyright 2018, Elsevier B.V.
Fig.5 Schematic illustration of the assay strategy for the detection of biothiols(a) and acetylcholinesterase activity(b) based on DNA?AgNCs[47](A), schematic diagram of principle for individual detection of His and Cys[56](B). schematic illustration of the analysis of miR?21 based on the distance?dependent PET between DNA?AgNCs and G?quadruplex/hemin[61](C) and schematic illustration of DNA?AgNCs nano?bioprobe based on FRET for the determination of miRNA?21[62](D)(A) Copyright 2016, Elsevier B.V.; (B) Copyright 2019, Springer-Verlag GmbH Austria, part of Springer Nature;(C) Copyright 2017, American Chemical Society; (D) Copyright 2020, Elsevier B.V.
Fig.6 Schematic illustration of the label?free method for specific DNA detection based on SPEET between DNA?AgNCs and AuNPs[64](A), scheme for the GO?based multicolor DNA analysis[65](B), assay of the target DNAs or ATP/thrombin using DNA?AgNCs/GO system[66](C) and Schematic illustration of the DNase I activity assay based on DNA?AgNCs/GO nanocomposite[67](D)(A) Copyright 2015, American Chemical Society; (B) Copyright 2012, the Royal Society of Chemistry; (C) Copyright 2013, American Chemical Society; (D) Copyright 2016, Elsevier B.V..
1 | Yuan X., Luo Z. T., Yu Y., Yao Q. F., Xie J. P., Chem. Asian. J., 2013, 8(5), 858―871 |
2 | Fang J., Zhang B., Yao Q. F., Yang Y., Xie J. P., Yan N., Coord. Chem. Rev., 2016, 322, 1―29 |
3 | Evanoff D. D., Chumanov G., ChemPhysChem, 2005, 6(7), 1221―1231 |
4 | Zheng J., Nicovich P. R., Dickson R. M., Annu. Rev. Phys. Chem., 2007, 58, 409―431 |
5 | Zhang L. B., Wang E. K., Nano Today, 2014, 9(1), 132―157 |
6 | Xu H. X., Suslick K. S., Adv. Mater., 2010, 22(10), 1078―1082 |
7 | Diez I., Ras R. H. A., Nanoscale, 2011, 3(5), 1963―1970 |
8 | Xu M. D., Gao Z. Q., Wei Q. H., Chen G. N., Tang D. P., Biosens. Bioelectron., 2016, 79, 411―415 |
9 | Petty J. T., Zheng J., Hud N. V., Dickson R. M., J. Am. Chem. Soc., 2004, 126(16), 5207―5212 |
10 | New S. Y., Lee S. T., Su X. D., Nanoscale, 2016, 8(41), 17729―17746 |
11 | Ritchie C. M., Johnsen K. R., Kiser J. R., Antoku Y., Dickson R. M., Petty J. T., J. Phys. Chem. C, 2007, 111(1), 175―181 |
12 | Weadick D. S., Liu J. W., Nanomaterials, 2015, 5(2), 804―813 |
13 | Schultz D., Gardner K., Oemrawsingh S. S. R., Markesevic N., Olsson K., Debord M., Bouwmeester D., Gwinn E., Adv. Mater., 2013, 25(20), 2797―2803 |
14 | O'Neill P. R., Gwinn E. G., Fygenson D. K., J. Phys. Chem. C, 2011, 115(49), 24061―24066 |
15 | Obliosca J. M., Babin M. C., Liu C., Liu Y. H., Chen Y. A., Batson R. A., Ganguly M., Petty J. T., Yeh H. C., ACS Nano, 2014, 8(10), 10150―10160 |
16 | Richards C. I., Choi S., Hsiang J. C., Antoku Y., Vosch T., Bongiorno A., Tzeng Y. L., Dickson R. M., J. Am. Chem. Soc., 2008, 130(15), 5038―5039 |
17 | Sengupta B., Ritchie C. M., Buckman J. G., Johnsen K. R., Goodwin P. M., Petty J. T., J. Phys. Chem. C, 2008, 112 (48), 18776―18782 |
18 | Koszinowski K., Ballweg K., Chem. Eur. J., 2010, 16(11), 3285―3290 |
19 | Yang X., Gan L. F., Han L., Wang E. K., Wang J., Angew. Chem. Int. Ed., 2013, 52(7), 2022―2026 |
20 | Wang J. Y., Du C. Y., Yu P. T., Zhang Q., Li H. X., Sun C. Y., Sensor. Actuat. B⁃Chem., 2021, 348, e130707 |
21 | O’Neill P. R., Velazquez L. R., Dunn D. G., Gwinn E. G., Fygenson D. K., J. Phys. Chem. C, 2009, 113(11), 4229―4233 |
22 | Choi S. M., Yu J. H., Patel S. A., Tzeng Y. L., Dickson R. M., Photoch. Photobio. Sci., 2011, 10(1) 109―115 |
23 | Zhou Q., Lin Y.X., Xu M. D., Gao Z. Q., Yang H. H., Tang D. P., Anal. Chem., 2016, 88(17), 8886―8892 |
24 | Huang Z. Z., Pu F., Hu D., Wang C. Y., Ren J. S., Qu X. G., Chem. Eur. J., 2011, 17(13), 3774―3780 |
25 | Ma K., Cui Q. H., Liu G. Y., Wu F., Xu S. J., Shao Y., Nanotechnology, 2011, 22(30), e305502 |
26 | Cui Q. H., Ma K., Shao Y., Xu S. J., Wu F., Liu G. Y., Teramae N., Bao H. F., Anal. Chim. Acta, 2012, 724, 86―91 |
27 | Ihara T., Ishii T., Araki N., Wilson A. W., Jyo A., J. Am. Chem. Soc., 2009, 131(11), 3826―3827 |
28 | Feng L. Y., Huang Z. Z., Ren J. S., Qu X. G., Nucleic Acids Res., 2012, 40(16), e122 |
29 | Sengupta B., Springer K., Buckman J. G., Story S. P., Abe O. H., Hasan Z. W., Prudowsky Z. D., Rudisill S. E., Degtyareva N. N., Petty J. T., J. Phys. Chem. C, 2009, 113(45), 19518―19524 |
30 | Ai J., Guo W. W., Li B. L., Li T., Li D., Wang E. K., Talanta, 2012, 88, 450―455 |
31 | Tao G. Y., Chen Y., Lin R. Y., Zhou J., Pei X. J., Liu F., Li N., Nano Res., 2018, 11(4), 2237―2247 |
32 | Latorre A., Lorca R., Zamora F., Somoza A., Chem. Comm., 2013, 49(43), 4950―4952 |
33 | Yeh H. C., Sharma J., Han J. J., Martinez J. S., Werner J. H., Nano Lett., 2010, 10(8), 3106―3110 |
34 | Yeh H. C., Sharma J., Shih I. M., Vu D. M., Martinez J. S., Werner J. H., J. Am. Chem. Soc., 2012, 134(28), 11550―11558 |
35 | Li J. J., Zhong X. Q., Zhang H. Q., Le X. C., Zhu J. J., Anal. Chem., 2012, 84(12), 5170―5174 |
36 | Guo Y. H., Zhang Y., Pei R. J., Cheng Y. L., Xie Y. F., Yu H., Yao W. R., Li H. W., Qian H., Sensor. Actuat. B⁃Chem., 2019, 281, 493―498 |
37 | Ma J. L., Yin B. C., Ye B. C., RSC Adv., 2015, 5(119), 98467―98471 |
38 | Zhang B. Z., Wei C. Y., RSC Adv., 2017, 7(89), 56289―56295 |
39 | Zhang B. Z., Wei C. Y., Talanta, 2018, 182, 125―130 |
40 | Lee J., Park J., Lee H. H., Parkc H, Kimb H. I., Kim W. J., Biosens. Bioelectron., 2015, 68, 642―647 |
41 | Zhang J., Xia Y. K., Chen M., Wu D. Z., Cai S. X., Liu M. M., He W. H., Chen J. H., Sensor. Actuat. B⁃Chem., 2016, 235, 79―85 |
42 | Li T. T., Xiao P. F., Khan A., Wang Z. L., He N. Y., Nanosci. Nanotech. Let., 2017, 9(6), 892―896 |
43 | Qin Y., Daniyal M., Wang W. M., Jian Y. Q., Yang W., Qiu Y. X., Tong C. Y., Wang W., Liu B., Sensor. Actuat. B⁃Chem., 2019, 291, 485―492 |
44 | Eun H., Kwon W. Y., Kalimuthu K, Kim Y., Lee M., Ahn J. O., Lee H., Lee S. H., Kim H. J., Park H. G., Park K. S., J. Mater. Chem. B, 2019, 7(15), 2512―2517 |
45 | Han B. Y., Wang E. K., Biosens. Bioelectron., 2011, 26(5), 2585―2589 |
46 | Zhang P., Jia C. Y., Zhao Y. N., Luo H. H., Tan X., Ma X. H., Wang Y., Microchim. Acta, 2019, 186(9), e609 |
47 | Li C. Y., Wei C. Y., Sensor. Actuat. B⁃Chem., 2017, 240, 451―458 |
48 | Huang Z. Z., Pu F., Lin Y. H., Ren J. S., Qu X. G., Chem. Comm., 2011, 47(12), 3487―3489 |
49 | Xie J. P., Zheng Y. G., Ying J. Y., Chem. Comm., 2010, 46(6), 961―963 |
50 | Morishita K., MacLean J. L., Liu B. W., Jiang H., Liu J. W., Nanoscale, 2013, 5(7), 2840―2849 |
51 | Cao H. Y., Chen Z. H., Zheng H. Z., Huang Y. M., Biosens. Bioelectron., 2014, 62, 189―195 |
52 | Zhang M., Ye B. C., Analyst, 2011, 136(24), 5139―5142 |
53 | Zhou Y., Zhou T. S., Zhang M., Shi G. Y., Analyst, 2014, 139(12), 3122―3126 |
54 | Ma J. L., Yin B. C., Wu X., Ye B. C., Anal. Chem., 2016, 88(18), 9219―9225 |
55 | Wang R. J., Yan X. L., Sun J., Wang X., Zhao X. E., Liu W., Zhu S. Y., Anal. Methods⁃UK, 2018, 10(34), 4183―4188 |
56 | Lin X. D., Hao Z., Wu H. T., Zhao M. Y. Gao X., Wang S., Liu Y. Q., Microchim. Acta, 2019, 186(9), e648 |
57 | Lan G. Y., Chen W. Y., Chang H. T., RSC. Adv., 2011, 1(5), 802―807 |
58 | Peng J., Ling J., Zhang X. Q., Bai H. P., Zheng L. Y., Cao Q. E., Ding Z. T., Spectrochim. Acta Mol. Biomol. Spectros., 2015, 137, 1250―1257 |
59 | Xie P. S., Zhan Y. J., Wu M., Guo L. H., Lin Z. Y., Qiu B., Chen G. N., Cai Z. W., J. Lumin., 2017, 186, 103―108 |
60 | Zhang L. B., Zhu J. B., Guo S. J., Li T., Li J., Wang E. K., J. Am. Chem. Soc., 2013, 135(7), 2403―2406 |
61 | Lu S. S., Wang S., Zhao J. H., Sun J., Yang X. R., Anal. Chem., 2017, 89(16), 8429―8436 |
62 | Nasirian V., Shamsipur M., Molaabasi F., Mansouri K., Sarparast M., Salim V., Barati A., Kashanian S., Sensor. Actuat. B⁃Chem., 2020, 308, e127673 |
63 | Chen C. W., Wang C. H., Wei C. M., Hsieh C. Y., Chen Y. T., Chen Y. F., Lai C. W., Liu C. L., Hsieh C. C., Chou P. T., J. Phys. Chem. C, 2010, 114, 799―802 |
64 | Ma J. L., Yin B. C., Le H. N., Ye B. C., ACS Appl. Mater. Inter., 2015, 7(23), 12856―12863 |
65 | Tao Y., Lin Y. H., Huang Z. Z., Ren J. S., Qu X. G., Analyst, 2012, 137(11), 2588―2592 |
66 | Liu X. Q., Wang F., Aizen R., Yehezkeli O., Willner I., J. Am. Chem. Soc., 2013, 135(32), 11832―11839 |
67 | Lee C. Y., Park K. S., Jung Y. K., Park H. G., Biosens. Bioelectron., 2017, 93, 293―297. |
68 | Wang W., Zhan L., Du Y. Q., Leng F., Chang Y., Gao M. X., Huang C. Z., Anal. Methods⁃UK, 2013, 5(20), 5555―5559 |
69 | Khan I. M., Zhao S., Niazi S., Mohsin A., Shoaib M., Duan N., Wu S. J., Wang Z. P., Sensor. Actuat. B⁃Chem., 2018, 277, 328―335 |
70 | Zhang X. Y., Khan I. M., Ji H., Wang Z. P., Tian H. L., Cao W. B., Mi W. Y., Polymers, 2020, 12(1), e152 |
71 | Liu X. Q., Wang F., Niazov⁃Elkan A., Guo W. W., Willner I., Nano Lett., 2013, 13(1), 309―314 |
72 | Lee J., Park J., Lee H. H., Kim H. I., Kim W. J., J. Mater. Chem. B, 2014, 2(17), 2616―2621 |
73 | Wang G. F., Zhu Y. H., Chen L., Wang L., Zhang X. J., Analyst, 2014, 139(1), 165―169 |
[1] | 刘晓磊, 陆永强, 游淇, 刘国辉, 姚伟, 胡日茗, 闫纪宪, 崔玉, 杨小凤, 孙国新, 蒋绪川. 基于3-羟基沙利度胺的比率型荧光探针对过氧化氢的检测[J]. 高等学校化学学报, 2022, 43(6): 20220070. |
[2] | 鲁聪, 李振华, 刘金露, 华佳, 李光华, 施展, 冯守华. 一种新的镧系金属有机骨架材料的合成、 结构及荧光检测性质[J]. 高等学校化学学报, 2022, 43(6): 20220037. |
[3] | 蒋小康, 周琦, 周恒为. Gd2ZnTiO6∶Dy3+, Eu3+单基质白光荧光粉的制备与发光性能[J]. 高等学校化学学报, 2022, 43(6): 20220029. |
[4] | 赵永梅, 穆叶舒, 洪琛, 罗稳, 田智勇. 双萘酰亚胺衍生物用于检测水溶液中的苦味酸[J]. 高等学校化学学报, 2022, 43(3): 20210765. |
[5] | 李巧, 赵洋, 王恩举. 基于芳叉丙二腈的高活性迈克尔系统的吸湿反应及荧光性质[J]. 高等学校化学学报, 2022, 43(3): 20210690. |
[6] | 田雪琴, 莫争, 丁鑫, 武鹏彦, 王雨, 王健. 方胺功能化荧光金属-有机框架材料的制备及对组氨酸的识别研究[J]. 高等学校化学学报, 2022, 43(2): 20210589. |
[7] | 唐倩, 但飞君, 郭涛, 兰海闯. 喹啉酮-香豆素类Hg2+比色荧光探针的合成及应用[J]. 高等学校化学学报, 2022, 43(2): 20210660. |
[8] | 伍泽鑫, 朱渊杰, 王泓中, 王均安, 贺英. 甲基修饰的咔唑/二苯砜基AIE-TADF蓝光材料及其OLED器件[J]. 高等学校化学学报, 2022, 43(11): 20220371. |
[9] | 王迪, 钟克利, 汤立军, 侯淑华, 吕春欣. 席夫碱共价有机框架的合成及对I ‒ 的识别[J]. 高等学校化学学报, 2022, 43(10): 20220115. |
[10] | 刘苗, 刘瑞波, 刘巴蒂, 钱鹰. 溶酶体靶向吲哚氟硼二吡咯光敏剂的合成、 双光子荧光成像及光动力治疗[J]. 高等学校化学学报, 2022, 43(10): 20220326. |
[11] | 李文, 乔珺一, 刘鑫垚, 刘云凌. 含萘基团的锆金属有机骨架材料对水中硝基芳烃爆炸物的荧光检测性能[J]. 高等学校化学学报, 2022, 43(1): 20210654. |
[12] | 吴季, 张浩, 骆昱晖, 耿吴越, 兰亚乾. 一种具有荧光性质的阳离子Ga⁃MOF用于Fe3+和硝基化合物识别[J]. 高等学校化学学报, 2022, 43(1): 20210617. |
[13] | 马鉴新, 刘晓东, 徐娜, 刘国成, 王秀丽. 一种具有发光传感、 安培传感和染料吸附性能的多功能Zn(II)配位聚合物[J]. 高等学校化学学报, 2022, 43(1): 20210585. |
[14] | 洪洋宇, 邢宏珠, 秉琦明, 高旭文, 齐斌, 陈亚坤, 苏钽, 邹勃. 新型Ce3+掺杂亚磷酸锰开放骨架材料的合成与荧光性质[J]. 高等学校化学学报, 2021, 42(9): 2725. |
[15] | 李然, 张旭东, 穆丽丹, 孙童, 艾刚刚, 沙夜龙, 张玉琦, 王记江. 三联噻吩衍生物功能化SiO2反蛋白石光子晶体荧光薄膜的制备及应用[J]. 高等学校化学学报, 2021, 42(9): 2989. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||