高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (2): 445.doi: 10.7503/cjcu20200605

• 综合评述 • 上一篇    下一篇

二维材料用于渗透能转换的研究进展

辛伟闻1,2, 闻利平1,2()   

  1. 1.中国科学院理化技术研究所, 中国科学院仿生材料与界面科学重点实验室, 北京 100190
    2.中国科学院大学未来技术学院, 北京 100049
  • 收稿日期:2020-08-27 出版日期:2021-02-10 发布日期:2020-11-27
  • 通讯作者: 闻利平 E-mail:wen@mail.ipc.ac.cn
  • 基金资助:
    国家重点研发计划项目(批准号(2017YFA0206904);2017YFA0206900)、 国家自然科学基金(批准号(21625303);21905287, 51673206, 21988102)、 中国科学院战略重点研究项目(XDA21010213);中国科学院关键研究项目(QYZDY-SSWSLH014)

Two-dimensional Materials for Osmotic Energy Conversion

XIN Weiwen1,2, WEN Liping1,2()   

  1. 1.CAS Key Laboratory of Bio?inspired Materials and Interfacial Science,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China
    2.School of Future Technology,University of Chinese Academy of Sciences,Beijing 100049,China
  • Received:2020-08-27 Online:2021-02-10 Published:2020-11-27
  • Contact: WEN Liping E-mail:wen@mail.ipc.ac.cn

摘要:

在河水与海水的交界处实现渗透能提取与捕获是解决未来能源危机的重要方式之一. 渗透能因为储量大, 容易获取以及绿色可持续的优势受到广泛关注. 反向电渗析技术是一种能够有效捕获渗透能的方法之一, 目前已经得到了深入的研究与发展. 离子交换膜是反向电渗析技术转换渗透能的关键组件, 其性能的优异程度决定能量转换效率的高低. 常见的膜材料主要是高分子聚合物及其改性化合物, 最近一些二维材料如石墨烯、 氧化石墨烯、 二硫化钼、 各种框架材料及其改性复合物因优异的选择性离子传输、 纳米级通道、 丰富的表面功能基团以及可修饰性成为捕获渗透能的重要膜材料. 本文综合评述了二维材料作为离子传输通道的类型以及相应的传输机理; 例举了二维材料及其复合物的设计方案和在渗透能转换方面的具体应用; 最后提出了目前二维材料在渗透能转换领域中面临的挑战以及未来的发展方向.

关键词: 二维材料, 渗透能转换, 离子传输, 纳米通道, 复合膜

Abstract:

Osmotic energy conversion, the extraction of power from the salt difference between river water and seawater, is a crucial way to solve the energy crisis in future. Osmotic energy attracts extensive attention and research due to its huge reserves, easy accessibility, and sustainability. Ion-exchange membrane is a key component in reverse electrodialysis(RED) technology for osmotic energy conversion, which immensely impacts the performance of osmotic energy conversion. Two-dimensional(2D) materials such as graphene, graphene oxide, molybdenum disulfide, various frame materials and their functionalized composites have become prospective materials for harvesting osmotic energy on account of their excellent ion selective transport, nanoscale pores or channels, abundant functional groups, and modifiability. In this review, we summarize the types of 2D materials as ion transport channels and their corresponding transport mechanisms. Furthermore, we also discuss the current state of the art in designs and show the applications of 2D materials and their composites in osmotic energy conversion. Finally, we overview the challenges of 2D materials in osmotic energy conversion and propose future directions of research.

Key words: Two-dimensional material, Osmotic energy conversion, Ion transport, Nanochannels, Composite membrane

中图分类号: 

TrendMD: