高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (6): 20250103.doi: 10.7503/cjcu20250103
• 综合评述 • 上一篇
收稿日期:
2025-04-07
出版日期:
2025-06-10
发布日期:
2025-05-14
通讯作者:
孙再成
E-mail:sunzc@bjut.edu.cn
基金资助:
LIU Yize1,2, LI Pengfei2, SUN Zaicheng2()
Received:
2025-04-07
Online:
2025-06-10
Published:
2025-05-14
Contact:
SUN Zaicheng
E-mail:sunzc@bjut.edu.cn
Supported by:
摘要:
碳点(CDs)作为一类新型零维碳基纳米材料, 因其可调发光性、 低毒性和多功能性, 在生物成像、 光电器件及环境传感等领域展现出广阔应用前景. 由于制备方法不同、 原料来源多样以及组成结构复杂, 碳点的发光机制一直是研究重点. 不明确的发光机制制约了高荧光性能碳点的设计与应用. 本文系统梳理了碳点的结构与发光机制之间的构效关系, 重点解析了量子限域效应、 有效共轭长度、 表面-边缘态、 分子态及交联增强发射效应等5种核心机制的作用, 以期为高荧光性能碳点的可控合成与功能化应用提供理论指导.
中图分类号:
TrendMD:
刘翼泽, 李鹏飞, 孙再成. 碳点发光机制与结构之间的构效关系. 高等学校化学学报, 2025, 46(6): 20250103.
LIU Yize, LI Pengfei, SUN Zaicheng. Correlation Between the Photoluminescene Mechanism and Structure of Carbon Dots. Chem. J. Chinese Universities, 2025, 46(6): 20250103.
Fig.1 Schematic depicting the fabrication strategies of CDs(A)[6], confocal images of cells coincubation with M⁃CDs and schematic representation of the structure of stress granules and their labeling by M⁃CDs(B)[10], an image of a UV⁃pumped WLED using the W⁃CNQDs as phosphors and the EL spectrum and CIE color coordinates of the WLED lamp(C)[12] and possible CL mechanism for CTAB@carbon dot⁃Co(II)⁃H2O2⁃OH- system(D)[14](A) Copyright 2021, Elsevier Ltd.; (B) Copyright 2023, John Wiley & Sons; (C) Copyright 2019, Royal Society of Chemistry; (D) Copyright 2013, Elsevier Ltd.
Fig.2 Classification of carbon dots(CDs, A)[16], hypothesized structural model of black carbon dots(B⁃CDs, B)[21], a general core⁃shell structure of carbon quantum dots(CQDs, C)[24] and structural model of carbonized polymer dots(CPDs, D)[25](A) Copyright 2020, American Chemical Society; (B) Copyright 2020, Elsevier Ltd.; (C) Copyright 2024, John Wiley & Sons; (D) Copyright 2024, American Chemical Society.
Fig.3 Schematic diagrams of five fluorescence emission mechanisms(A) Quantum confinement effect[29]; (B) effective conjugate length[30]; (C) surface-edge states[31]; (D) molecular states[32]; (E) cross-link enhanced emission effects[33]. (A) Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (B) Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (C) Copyright 2018, Springer Nature; (D) Copyright 2025, Wiley-VCH GmbH; (E) Copyright 2018, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.4 Schematic diagram of quantum confinement effect(A) and effective conjugate length(B)The cubes in (A) and (B) represent the size of CDs, small boxes in (B) represent the effective conjugation length.
Fig.5 The effect of size on emission wavelength of GQDs(A)[37], normalized PL spectra of CQDs(B)[38], typical sized CQDs optical images(C)[39], UV⁃Vis absorption and PL emission spectra of GQD⁃1200 in water solution(D)[40], GQD composed of four pyrene domains separated by sp3 carbons(green spheres)(E)[37], the possible photoluminescence(PL) emission mechanism for N⁃GQDs⁃B, G, and Y(F)[41](A, E) Copyright 2014, the Royal Society of Chemistry; (B) Copyright 2020, American Association for the Advancement of Science; (C) Copyright 2010, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (D) Copyright 2011, American Chemical Society; (F) Copyright 2015, Springer Nature.
Fig.6 Schematic of a possible growth mechanism(A)[43], model for the tunable PL of CDs with different degrees of oxidation(B)[44], optical property of the C⁃Dots in ethanol solution(C)[45], schematic illustration for the PL mechanism of six C⁃dots(D)[46](A) Copyright 2022, American Chemical Society; (B) Copyright 2015, American Chemical Society; (C) Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (D) Copyright 2016, the Royal Society of Chemistry.
Fig.7 A schematic of the red emission CDs building⁃up process in the solvent⁃free method sysem of oPD and CAT(A)[50], a schematic of three types of CDs reaction process in different solvent(B), the photostability of three types of CDs and corresponding molecular fluorophore(C), typical emission spectra of G⁃CDs and DAP at different pH(D)[54], the relationship between molecular fluorophores and CA⁃EDA CPDs(E)[53](A) Copyright 2022, Springer Nature; (B—D) Copyright 2024, Wiley-VCH GmbH; (E) Copyright 2024, Wiley-VCH GmbH.
Fig.8 CEE effect in luminescent polymers containing sub⁃luminophores or luminophores(A)[62], representation for the PL mechanism(CEE effect) of bare PEI and PDs 1⁃4(B)[61], optimized molecular structures and molecular orbitals involved in the fluorescence phenomenon(C)[63], schematic model for formation of vesicle of PVDM⁃1 and its transformation to intervesicular aggregates in PVDMS via ionic interaction with enhancement of emission(D)[64], general design for studying confined⁃domain CEE in CPDs(E)[20], the PL mechanisms of CDs(F)[34], the reaction process of HTCP to prepare CPDs by the “bottom⁃up” route(G)[2] and a schematic of the CDs obtained at different hydrothermal temperatures(H)[52](A) Copyright 2020, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (B) Copyright 2014, Royal Society of Chemistry; (C) Copyright 2018, American Chemical Society; (D) Copyright 2019, American Chemical Society; (E) Copyright 2022, Springer Nature; (F) Copyright 2021, Science China Press; (G) Copyright 2019, American Chemical Society; (H) Copyright 2015, the Royal Society of Chemistry.
1 | Hu Y., Seivert O., Tang Y., Karahan H. E., Bianco A., Angew. Chem. Int. Ed., 2024, 63(48), e202412341 |
2 | Tao S., Feng T., Zheng C., Zhu S., Yang B., J. Phys. Chem. Lett., 2019, 10(17), 5182—5188 |
3 | Xu X., Ray R., Gu Y., Ploehn H. J., Gearheart L., Raker K., Scrivens W. A., J. Am. Chem. Soc., 2004, 126(40), 12736—12737 |
4 | Sun Y. P., Zhou B., Lin Y., Wang W., Fernando K. A. S., Pathak P., Meziani M. J., Harruff B. A., Wang X., Wang H., Luo P. G., Yang H., Kose M. E., Chen B., Veca L. M., Xie S. Y., J. Am. Chem. Soc., 2006, 128(24), 7756—7757 |
5 | Shen C., Lou Q., Liu K., Dong L., Shan C., Nano Today, 2020, 35, 100954 |
6 | Li S., Li L., Tu H., Zhang H., Silvester D. S., Banks C. E., Zou G., Hou H., Ji X., Mater. Today, 2021, 51, 188—207 |
7 | Alafeef M., Srivastava I., Aditya T., Pan D., Small, 2024, 20(4), e2303937 |
8 | Liu H., Zhong X., Pan Q., Zhang Y., Deng W., Zou G., Hou H., Ji X., Coord. Chem. Rev., 2024, 498, 215468 |
9 | Hettiarachchi S. D., Graham R. M., Mintz K. J., Zhou Y., Vanni S., Peng Z., Leblanc R. M., Nanoscale, 2019, 11(13), 6192—6205 |
10 | Jiang L., Cai H., Zhou W., Li Z., Zhang L., Bi H., Adv. Mater., 2023, 35(21), e2210776 |
11 | Ji C., Xu W., Han Q., Zhao T., Deng J., Peng Z., Nano Energy, 2023, 114, 108623 |
12 | Yuan T., Yuan F., Li X., Li Y., Fan L., Yang S., Chem. Sci., 2019, 10(42), 9801—9806 |
13 | Cao L., Zan M., Chen F., Kou X., Liu Y., Wang P., Mei Q., Hou Z., Dong W., Li L., Carbon, 2022, 194, 42—51 |
14 | Shi J., Lu C., Yan D., Ma L., Biosens. Bioelectron., 2013, 45, 58—64 |
15 | Amjadi M., Manzoori J. L., Hallaj T., Sorouraddin M. H., Spectrochim. Acta A, 2014, 122, 715—720 |
16 | Liu J., Li R., Yang B., ACS Cent. Sci., 2020, 6(12), 2179—2195 |
17 | Yang S., Li Y., Chen L., Wang H., Shang L., He P., Dong H., Wang G., Ding G., Small, 2023, 19(31), e2205957 |
18 | Song J., Kang M., Ji S., Ye S., Guo J., Nanomaterials, 2025, 15(2), 81 |
19 | Yu J., Yong X., Tang Z., Yang B., Lu S., J. Phys. Chem. Lett., 2021, 12(32), 7671—7687 |
20 | Tao S., Zhou C., Kang C., Zhu S., Feng T., Zhang S., Ding Z., Zheng C., Xia C., Yang B., Light⁃Sci. Appl., 2022, 11(1), 56 |
21 | Mintz K. J., Bartoli M., Rovere M., Zhou Y., Hettiarachchi S. D., Paudyal S., Chen J., Domena J. B., Liyanage P. Y., Sampson R., Khadka D., Pandey R. R., Huang S., Chusuei C. C., Tagliaferro A., Leblanc R. M., Carbon, 2021, 173, 433—447 |
22 | Tetsuka H., Nagoya A., Fukusumi T., Matsui T., Adv. Mater., 2016, 28(23), 4632—4638 |
23 | Liu Y., Huang Z., Wang X., Hao Y., Yang J., Wang H., Qu S., Adv. Funct. Mater., 2024, 35(17), 2420587 |
24 | You W., Zou W., Jiang S., Zhang J., Ge Y., Lu G., Bahnemann D. W., Pan J., Carbon Neutralization, 2024, 3(2), 245—284 |
25 | Wang B., Waterhouse G. I. N., Yang B., Lu S., Acc. Chem. Res., 2024, 57(19), 2928—2939 |
26 | Liu M., Chen B., Li C., Huang C., Green Chem., 2019, 21(3), 449—471 |
27 | Xue S., Li P., Sun L., An L., Qu D., Wang X., Sun Z., Small, 2023, 19(31), e2206180 |
28 | Jiang Y., Zhao T., Xu W., Peng Z., Carbon, 2024, 219, 118838 |
29 | Ding H., Wei J., Zhang P., Zhou Z., Gao Q., Xiong H., Small, 2018, 14(22), 1800612 |
30 | Wei S., Yin X., Li H., Du X., Zhang L., Yang Q., Yang R., Chemistry, 2020, 26(36), 8129—8136 |
31 | Liu C., Wang R., Wang B., Deng Z., Jin Y., Kang Y., Chen J., Microchim. Acta, 2018, 185, 1—8 |
32 | Kasprzyk W., Romańczyk P. P., Starzak K., Wysocka A., Waluda Ł., Świergosz T., Bashmakova N. V., Klishevich G. V., Dmytruk A. M., Klyuyev I. S., Bondar M. V., Small Struct., 2025, 6(3), 2400583 |
33 | Tao S., Lu S., Geng Y., Zhu S., Redfern S. A. T., Song Y., Feng T., Xu W., Yang B., Angew. Chem. Int. Ed., 2018, 57(9), 2393—2398 |
34 | Ai L., Yang Y., Wang B., Chang J., Tang Z., Yang B., Lu S., Sci. Bull., 2021, 66(8), 839—856 |
35 | Tao K., Fan Z., Sun L., Makam P., Tian Z., Ruegsegger M., Shaham⁃Niv S., Hansford D., Aizen R., Pan Z., Galster S., Ma J., Yuan F., Si M., Qu S., Zhang M., Gazit E., Li J., Nat. Commun., 2018, 9(1), 3217 |
36 | Bai H., Jin X., Cheng Z., Zhou H., Wang H., Yu J., Zuo J., Chen W., Adv. Compos. Hybrid. Mater., 2023, 6(2), 62 |
37 | Sk M. A., Ananthanarayanan A., Huang L., Lim K. H., Chen P., J. Mater. Chem. C, 2014, 2(34), 6954—6960 |
38 | Wang L., Li W., Yin L., Liu Y., Guo H., Lai J., Han Y., Li G., Li M., Zhang J., Vajtai R., Ajayan P. M., Wu M., Sci. Adv., 2020, 6(40), eabb6772 |
39 | Li H., He X., Kang Z., Huang H., Liu Y., Liu J., Lian S., Tsang C. H., Yang X., Lee S. T., Angew. Chem. Int. Ed., 2010, 49(26), 4430—4434 |
40 | Liu R., Wu D., Feng X., Mullen K., J. Am. Chem. Soc., 2011, 133(39), 15221—15223 |
41 | Qu D., Zheng M., Li J., Xie Z., Sun Z., Light⁃Sci. Appl., 2015, 4(12), e364 |
42 | Du J., Wang H., Wang L., Zhu S., Song Y., Yang B., Sun H., J. Mater. Chem. C., 2016, 4(11), 2235—2242 |
43 | Khan S. N., Weight B. M., Gifford B. J., Tretiak S., Bishop A., J. Phys. Chem. Lett., 2022, 13(25), 5801—5807 |
44 | Ding H., Yu S. B., Wei J. S., Xiong H. M., ACS Nano, 2016, 10(1), 484—491 |
45 | Miao X., Qu D., Yang D., Nie B., Zhao Y., Fan H., Sun Z., Adv. Mater., 2018, 30(1), 1704740 |
46 | Guo L., Ge J., Liu W., Niu G., Jia Q., Wang H., Wang P., Nanoscale, 2016, 8(2), 729—734 |
47 | Bian Z., Gomez E., Gruebele M., Levine B. G., Link S., Mehmood A., Nie S., Chem. Sci., 2025, 16(10), 4195—4212 |
48 | Soni N., Singh S., Sharma S., Batra G., Kaushik K., Rao C., Verma N. C., Mondal B., Yadav A., Nandi C. K., Chem. Sci., 2021, 12(10), 3615—3626 |
49 | Zhu P., Tan K., Chen Q., Xiong J., Gao L., Chem. Mater., 2019, 31(13), 4732—4742 |
50 | Li P., Xue S., Sun L., Zong X., An L., Qu D., Wang X., Sun Z., Light⁃Sci. Appl., 2022, 11(1), 298 |
51 | Zhu S., Zhao X., Song Y., Lu S., Yang B., Nano Today, 2016, 11(2), 128—132 |
52 | Song Y., Zhu S., Zhang S., Fu Y., Wang L., Zhao X., Yang B., J. Mater. Chem. C, 2015, 3(23), 5976—5984 |
53 | Han X., Xia C., Wu H., Xie Y., Li R., Sui B., Yu Y., Wang B., Yang B., Angew. Chem. Int. Ed., 2025, 64(12), e202422822 |
54 | Li P., Xue S., Sun L., Ma X., Liu W., An L., Liu Y., Qu D., Sun Z., Small, 2024, 20(29), e2310563 |
55 | Zhang Y., Ding S., Yu J., Sui L., Song H., Hu Y., Waterhouse G. I. N., Tang Z., Lu S., Matter, 2024, 7(10), 3518—3536 |
56 | Gao S., Zhang P., Xu L., Lian H., Xu C., Bioresource Technol., 2025, 132493 |
57 | Han B., Hu X., Zhang X., Huang X., An M., Chen X., Zhao D., Li J., RSC Adv., 2022, 12(19), 11640—11648 |
58 | Zhou Y., Sharma S. K., Peng Z., Leblanc R. M., Polymers, 2017, 9(2), 67 |
59 | Li P., Sun Z., Light⁃Sci. Appl., 2022, 11(1), 81 |
60 | He C., Xu P., Zhang X., Long W., Carbon, 2022, 186, 91—127 |
61 | Zhu S., Wang L., Zhou N., Zhao X., Song Y., Maharjan S., Zhang J., Lu L., Wang H., Yang B., Chem. Commun., 2014, 50(89), 13845—13848 |
62 | Tao S., Zhu S., Feng T., Zheng C., Yang B., Angew. Chem. Int. Ed., 2020, 59(25), 9826—9840 |
63 | Vallan L., Urriolabeitia E. P., Ruiperez F., Matxain J. M., Canton⁃Vitoria R., Tagmatarchis N., Benito A. M., Maser W. K., J. Am. Chem. Soc., 2018, 140(40), 12862—12869 |
64 | Pakhira M., Ghosh R., Rath S. P., Chatterjee D. P., Nandi A. K., Langmuir, 2019, 35(16), 5525—5533 |
65 | Radovic L. R., Bockrath B., J. Am. Chem. Soc., 2005, 127(16), 5917—5927 |
66 | Abraham J. E., Balachandran M., J. Fluoresc., 2022, 32(3), 887—906 |
67 | Ru Y., Lu S.Y., Acta Polym. Sin., 2022, 53(7), 812—827 |
茹艺, 卢思宇. 高分子学报, 2022, 53(7), 812—827 | |
68 | Zhang Q., Wang R., Feng B., Zhong X., Ostrikov K., Nat. Commun., 2021, 12(1), 6856 |
69 | Mohammed L. J., Omer K. M., Nanoscale Res. Lett., 2020, 15(1), 182 |
70 | Yang Y., Kong W., Li H., Liu J., Yang M., Huang H., Liu Y., Wang Z., Wang Z., Sham T. K., Zhong J., Wang C., Liu Z., Lee S. T., Kang Z., ACS Appl. Mater. Interfaces, 2015, 7(49), 27324—27330 |
[1] | 潘卓涵, 艾琳, 卢思宇. 固态发光碳点的发光机理、 合成与应用研究进展[J]. 高等学校化学学报, 2025, 46(6): 20250081. |
[2] | 江霆杰, 曹珏然, 姚胜峰, 宋健, 李娜, 陈永颖, 李唯, 张浩然, 雷炳富. 菠菜基水溶红色荧光碳点的微波合成及Pb2+荧光检测性能[J]. 高等学校化学学报, 2025, 46(6): 20250082. |
[3] | 郭丹, 黄耿鸿, 白惠洁, 王亚玲, 曹广群, 刘斌, 胡胜亮. 高荧光量子产率的CO2衍生红光碳点的制备及应用[J]. 高等学校化学学报, 2025, 46(6): 20250091. |
[4] | 薛小矿, 李建, 梁焕仪, 王一颖, 葛介超. 红光发射线粒体靶向铁掺杂碳点通过类过氧化物酶活性诱导铁死亡进行肿瘤治疗[J]. 高等学校化学学报, 2025, 46(6): 20250094. |
[5] | 刘钰鹏, 杨钧翔, 郝一鸣, 曲松楠. 近红外吸收/发光碳点的研究进展[J]. 高等学校化学学报, 2025, 46(6): 20240070. |
[6] | 刘瀛琪, 王叶梅, 蒋恺, 郑芬芬, 朱俊杰. 基于细胞衍生荧光碳点的葡萄糖比色及荧光测定[J]. 高等学校化学学报, 2025, 46(6): 20240386. |
[7] | 郝永梁, 李建, 王泽华, 葛介超. 基于红光碳点光敏剂的活性收缩水凝胶用于细菌感染的伤口愈合[J]. 高等学校化学学报, 2025, 46(6): 20240409. |
[8] | 王欣, 王宇, 穆富茂, 闫翎鹏, 王振国, 杨永珍. 碳点在有机太阳能电池界面工程中的应用与展望[J]. 高等学校化学学报, 2025, 46(6): 20240416. |
[9] | 陈奇丹, 陈冠吉, 游善媚, 臧欣瑶, 杨柏. 可用于防晒吸收剂的广谱抗紫外碳点的制备[J]. 高等学校化学学报, 2025, 46(6): 20240313. |
[10] | 李逢时, 蒋凯, 童鑫园, 武永健, 林恒伟. 硼掺杂控制陷阱密度及能级实现碳点的余辉寿命调控与动态信息加密应用[J]. 高等学校化学学报, 2025, 46(6): 20240545. |
[11] | 王长莹, 张大伟, 陈冠吉, 张镇威, 萧卫泓, 王斌, 陈奇丹, 杨柏. 碳点发光标记材料的制备及在水样中亚硝酸盐专一检测中的应用[J]. 高等学校化学学报, 2025, 46(6): 20240519. |
[12] | 刘金坤, 冉准, 刘青青, 刘应亮, 庄健乐, 胡超凡. 前驱体结构调控策略制备碳点基多色室温磷光材料[J]. 高等学校化学学报, 2025, 46(6): 20240412. |
[13] | 庞娥, 唐垣钰, 赵少静, 程强, 王晨, 陈健敏, 蓝敏焕. 乏氧激活化疗药物AQ4N与碳点自组装用于化疗联合声动力治疗肿瘤[J]. 高等学校化学学报, 2025, 46(6): 20240489. |
[14] | 杨春圆, 陈昊, 张攀, 李府赪, 袁伟雄, 郭佳壮, 王彩凤, 陈苏. 绿色荧光碳点的合成、 荧光机制和图案化[J]. 高等学校化学学报, 2025, 46(6): 20250093. |
[15] | 李丹, 胡鸿辉, 侯红帅, 张生, 刘立杰, 景明俊, 吴天景. 碳点调控混合相钛酸钠的储钠性能[J]. 高等学校化学学报, 2025, 46(6): 20240356. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||