高等学校化学学报 ›› 2025, Vol. 46 ›› Issue (1): 20240241.doi: 10.7503/cjcu20240241
收稿日期:
2024-05-17
出版日期:
2025-01-10
发布日期:
2024-06-14
通讯作者:
刘轶
E-mail:yiliuchem@jlu.edu.cn;hao_zhang@jlu.edu.cn
作者简介:
张 皓, 男, 博士, 教授, 主要从事生物医用材料方面的研究. E-mail: hao_zhang@jlu.edu.cn
基金资助:
WANG Shihao, SHI Wanrui, LIU Yi(), ZHANG Hao(
)
Received:
2024-05-17
Online:
2025-01-10
Published:
2024-06-14
Contact:
LIU Yi
E-mail:yiliuchem@jlu.edu.cn;hao_zhang@jlu.edu.cn
Supported by:
摘要:
环磷酸鸟苷酸合成酶[Cyclic guanosine monophosphate-adenosine monophosphate(GMP-AMP) synthase, cGAS蛋白]-干扰素刺激因子(Stimulator of interferon genes, STING蛋白)(cGAS-STING)信号通路是识别细胞质中异常DNA、 激活先天免疫应答系统的重要通路. cGAS蛋白在识别细胞质内异常DNA后, 可催化三磷酸腺苷(ATP)和三磷酸鸟苷(GTP)合成环状鸟苷酸二磷酸腺苷(Cyclic GMP-AMP, cGAMP). cGAMP作为第二信使激活STING蛋白, 促进I型干扰素的释放, 从而引起一系列免疫反应. cGAS-STING通路可以调控肿瘤的转移和增长, 参与抗肿瘤的先天免疫反应, 探究cGAS-STING通路的作用机制在肿瘤免疫治疗中具有重要意义. 本综合评述介绍了cGAS-STING通路的作用机制, 概述了目前在抗肿瘤免疫治疗中激活cGAS-STING通路的各类策略.
中图分类号:
TrendMD:
王适豪, 石万瑞, 刘轶, 张皓. cGAS-STING通路在肿瘤免疫治疗中的作用机制与研究进展. 高等学校化学学报, 2025, 46(1): 20240241.
WANG Shihao, SHI Wanrui, LIU Yi, ZHANG Hao. Research Progress and Mechanism of cGAS-STING Pathway in Tumor Immunotherapy. Chem. J. Chinese Universities, 2025, 46(1): 20240241.
Fig.2 Synthesis procedure of supramolecular cyclic dinucleotide nanoparticle delivery system CDG⁃NPs(A), cryo⁃EM image of CDG⁃NPs(B), CDG quantification in DC 2.4 cells at 4 h after coculture with CDG(423 μg/mL) and CDG⁃NPs(423 μg CDG/mL) measured by LC⁃MS(C), amount of IFN⁃β secreted by RAW 264.7 cocultured with CDG(146 μg/mL) and CDP⁃NPs(146 μg/mL CDG) for 24 h(D)[15], photographs and volume of tumors at 10th day after indicated treatments(E)[16] and representative fluorescence images of ROS in LLC cells after incubation of PBS, PDIC⁃NS or OXA(2.5 μmol/L) for 6 h(F)[17](A—D) Copyright 2023, American Chemical Society; (E) Copyright 2021, Wiley Online Library; (F) Copyright 2024, Wiley Online Library.
Fig.3 Synthesis procedure of DNF@LIPO using RCA reactionand further modification(A)[22], researchers injected C57BL/6 mice subcutaneously on day 0 with either naive cancer cells (cancer⁃challenged) or LMP vaccines and measured the tumor burden(B), researchers recorded SDS⁃PAGE results from the supernatant and the cell pellet of the LMP vaccines and naive cancer cells after hypotonic treatment(C)[24], synthesis procedure of PolyGu design and preparation of PolyGu NVs with model antigenOVA(D)[30] and synthesis procedure of forantigen⁃polymer conjugates(E)[31](C) Mark 1. pellet of naive cancer cells; Mark 2. supernatant of naive cancer cells; Mark 3. pellet of LMP vaccine; Mark 4. supernatant of LMP vaccine. (A) Copyright 2023, Wiley Online Library; (B, C) Copyright 2024, Wiley Online Library; (D) Copyright 2024, American Chemical Society; (E) Copyright 2024, American Chemical Society.
Fig.4 Synthesis procedure of MnO@mSiO2⁃iRGD NPs(A), accumulative Mn release of MnO@mSiO2⁃iRGD NPs in PBS solution with different pH values(7.4, 6.5, and 5.4) at 37 ℃(B)[37], synthesis of ISAMn⁃MOF(C), type I interferon activity in culture supernatant from BMDCs treated with 40 μg/mL ISAMn⁃MOF or 200 μmol/L MnCl2 for 2, 4, 6, 12, and 24 h, respectively(D)[39] and H&E and TUNEL staining images of primary tumors at day 7 after intravenous injection of various groups(E)[41](A, B) Copyright 2022, American Chemical Society; (C, D) Copyright 2023, American Chemical Society; (E) Copyright 2023, American Chemical Society.
Fig.5 Photos of different concentrations of HfMn⁃PAH reacting with H2O2(upper) and GSH(lower)(A), TEM image of HfMn⁃PAH without (-)GSH treatment(B), TEM image of HfMn⁃PAH with (+)GSH treatment(C)[47], amount of IFN⁃β secreted by RAW 264.7 cocultured with CDG (146 μg/mL) and CDP⁃NPs (146 μg/mL CDG) for 24 h(D)[51] and flow cytometry plots of effector memory T cells(TEM) (CD44high CD62Llow) gated in CD3+ CD8+ T cells(E)[54](A—C) Copyright 2024, American Chemical Society; (D) Copyright 2024, American Chemical Society; (E) Copyright 2023, Wiley Online Library.
1 | Lee A., Park E., Lee J., Choi B., Kang S., FEBS Lett., 2017, 591(6), 954—961 |
2 | Li S. A., Yang F. F., Wang F. X., Lv X. J., Li F. H., Dev. Comp. Immunol., 2021, 121, 104101 |
3 | Liu H. S., Yan Z. Z., Zhu D. Y., Xu H. Y., Liu F., Chen T., Zhang H. H., Zheng Y., Liu B. Y., Zhang L., Zhao W., Gao C. J., Cell Death Differ., 2023, 30(4), 992—1004 |
4 | Ishikawa H., Barber G. N., Nature, 2008, 455(7213), 674—678 |
5 | Zhong B., Yang Y., Li S., Wang Y. Y., Li Y., Diao F. C., Lei C. Q., He X., Zhang L., Tien P., Shu H. B., Immunity, 2008, 29(4), 538—550 |
6 | Shang G. J., Zhang C. G., Chen Z. J., Bai X. C., Zhang X. W., Nature, 2019, 567(7748), 389—393 |
7 | Lu D. F., Shang G. J., Li J., Lu Y., Bai X. C., Zhang X. W., Nature, 2022, 604(7906), 557—562 |
8 | Zhang X., Shi H. P., Wu J. X., Zhang X. W., Sun L. J., Chen C., Chen Z. J., Mol. Cell, 2013, 51(2), 226—235 |
9 | Ahn J., Xia T. L., Konno H., Konno K., Ruiz P., Barber G. N., Nat. Commun., 2014, 5, 5166 |
10 | Liu H. P., Zhang H. P., Wu X. Y., Ma D. P., Wu J. H., Wang L., Jiang Y., Fei Y. Y., Zhu C. G., Tan R., Jungblut P., Pei G., Dorhoi A., Yan Q. L., Zhang F., Zheng R. J., Liu S. Y., Liang H. J., Liu Z. H., Yang H., Chen J. X., Wang P., Tang T. Q., Peng W. X., Hu Z. S., Xu Z., Huang X. C., Wang J., Li H. H., Zhou Y. L., Liu F., Yan D. P., Kaufmann S. H. E., Chen C., Mao Z. Y., Ge B. X., Nature, 2018, 563(7729), 131—136 |
11 | Munn D. H., Mellor A. L., Trends Immunol., 2016, 37(3), 193—207 |
12 | Bakhoum S. F., Ngo B., Laughney A. M., Cavallo J. A., Murphy C. J., Ly P., Shah P., Sriram R. K., Watkins T. B. K., Taunk N. K., Duran M., Pauli C., Shaw C., Chadalavada K., Rajasekhar V. K., Genovese G., Venkatesan S., Birkbak N. J., McGranahan N., Lundquist M., LaPlant Q., Healey J. H., Elemento O., Chung C. H., Lee N. Y., Imielenski M., Nanjangud G., Pe’er D., Cleveland D. W., Powell S. N., Lammerding J., Swanton C., Cantley L. C., Nature, 2018, 553 (7689), 467—472 |
13 | Wang Z. H., Xi Z., Tetrahedron, 2021, 87, 132096 |
14 | Motedayen A. L., Pease J. E., Sharma R., Pinato D. J., J. Clin. Med., 2020, 9(10), 3323 |
15 | Xu L., Deng H. P., Wu L., Wang D. L., Shi L. L., Qian Q. H., Huang X. A., Zhu L. J., Gao X. H., Yang J. P., Su Y., Feng J., Zhu X. Y., ACS Nano, 2023, 17(11), 10090—10103 |
16 | Chen C. Y., Tong Y. H., Zheng Y. S., Shi Y. J., Chen Z. W., Li J., Liu X. L., Zhang D., Yang H. H., Small, 2021, 17(17), 2006970 |
17 | Zhao X. J., Zheng R. J., Zhang B. B., Zhao Y., Xue W. L., Fang Y. F., Huang Y. W., Yin M., Angew. Chem. Int. Ed., 2024, 63(11), e202318799 |
18 | Liu N., Xiao X. Y., Zhang Z. Q., Mao C., Wan M. M., Shen J., ACS Biomater. Sci. Eng., 2023, 9(11), 5999—6023 |
19 | Luecke S., Holleufer A., Christensen M. H., Jonsson K. L., Boni G. A., Sorensen L. K., Johannsen M., Jakobsen M. R., Hartmann R., Paludan S. R., EMBO Rep., 2017, 18(10), 1707—1715 |
20 | Civril F., Deimling T., de Oliveira Mann C. C., Ablasser A., Moldt M., Witte G., Hornung V., Hopfner K. P., Nature, 2013, 498(7454), 332—337 |
21 | Zhao Y., Cao W. Q., Liu Y., Chem. J. Chinese Universities, 2020, 41(5), 909—923 |
赵宇, 曹琬晴, 刘阳. 高等学校化学学报, 2020, 41(5), 909—923 | |
22 | Xu X. Y., Fan H. H., Yang Y., Yao S. K., Yu W. H., Guo Z. J., Tan W. H., Angew. Chem. Int. Ed., 2023, 62(24), e202303010 |
23 | Du M. J., Chen Z. J., Science, 2018, 361(6403), 704—709 |
24 | He X. L., Gong G. D., Chen M., Zhang H. J., Zhang Y. J., Richardson J. J., Chan W. Y., He Y. X., Guo J. L., Angew. Chem. Int. Ed., 2024, 63(12), e202314501 |
25 | Mao W. H., Jia S., Chen P., J. Nanopart. Res., 2023, 25, 135 |
26 | Khong H., Overwijk W. W., J. Immunotherap. Cancer, 2016, 4(1), 56 |
27 | Temizoz B., Kuroda E., Ishii K. J., Int. Immunol., 2016, 28(7), 329—338 |
28 | Kaur A., Baldwin J., Brar D., Salunke D. B., Petrovsky N., Curr. Opin. Chem. Biol., 2022, 70, 102172 |
29 | Kruit W. H. J., Suciu S., Dreno B., Mortier L., Robert C., Chiarion⁃Sileni V., Maio M., Testori A., Dorval T., Grob J. J., Becker J. C., Spatz A., Eggermont A. M. M., Louahed J., Lehmann F. F., Brichard V. G., Keilholz U., J. Clin. Oncol., 2013, 31(19), 2413—2420 |
30 | Zhang X. B., Wang K. Y., Zhao Z. Q., Shan X. Z., Wang Y. Q., Feng Z. Y., Li B. Y., Luo C., Chen X. Y., Sun J., ACS Nano, 2024, 18 (9), 7136—7147 |
31 | Chen H., Wang L. Y., Zhao X. F., Jiang H. L., Wu M. L., Ding Y. C., Jia X. Q., Zhang Y. N., Li T. T., Zhang Y., Zhou W., Zheng P. Y., Yang Y. L., Du J. J., ACS Nano, 2024, 18(12), 9160—9175 |
32 | Lei H. L., Hou G. H., Chen M. J., Ji J. S., Cheng L., Nano Today, 2023, 53, 102033 |
33 | Rottenberg S., Disler C., Perego P., Nat. Rev. Cancer, 2021, 21(1), 37—50 |
34 | Wang C. G., Guan Y. K., Lv M., Zhang R., Guo Z. Y., Wei X. M., Du X. X., Yang J., Li T., Wan Y., Su X. D., Huang X. J., Jiang Z. F., Immunity, 2018, 48(4), 675—687.E7 |
35 | Zhao Z., Ma Z. X., Wang B., Guan Y. K., Su X. D., Jiang Z. F., Cell Rep., 2020, 32(7), 108053 |
36 | Zhang T. X., Hu C. M., Zhang W. T., Ruan Y. D., Ma Y. H., Chen D. S., Huang Y. H., Fan S. H., Lin W. S., Huang Y. F., Liao K. S., Lu H., Xu J. F., Pi J., Guo X. R., Front. Immunol., 2023, 14, 1156239 |
37 | Sun Z. L., Wang Z. Y., Wang T., Wang J. J., Zhang H. T., Li Z. Y., Wang S. R., Sheng F. G., Yu J., Hou Y. L., ACS Nano, 2022, 16(8), 11862—11875 |
38 | Mallakpour S., Nikkhoo E., Hussain C. M., Coord. Chem. Rev., 2022, 451, 214262 |
39 | Zheng S. J., Yang M. F., Luo J. Q., Liu R., Song J., Chen Y., Du J. Z., ACS Nano, 2023, 17(16), 15905—15917 |
40 | Chen X. J., Tang Q. Y., Wang J. Q., Zhou Y., Li F. Q., Xie Y. X., Wang X. A., Du L., Li J. R., Pu J., Hu Q. Y., Gu Z., Liu P. F., Adv. Mater., 2023, 35(15), 2210440 |
41 | Zhou Q. H., Dutta D., Cao Y. F., Ge Z. S., ACS Nano, 2023, 17(10), 9374—9387 |
42 | Zhang X. Y., Zhang H., Zhang J. J., Yang M. D., Zhu M. Q., Yin Y. Z., Fan X., Yu F., Immunology, 2023, 168(3), 375—388 |
43 | Baskar R., Lee K. A., Yeo R., Yeoh K. W., Int. J. Med. Sci., 2012, 9(3), 193—199 |
44 | Peluso A., Caruso T., Landi A., Capobianco A., Molecules, 2019, 24(22), 4044 |
45 | Narayanan S J J., Tripathi D., Verma P., Adhikary A., Dutta A. K., ACS Omega, 2023, 8(12), 10669—10689 |
46 | Vanpouille⁃Box C., Alard A., Aryankalayil M. J., Sarfraz Y., Diamond J. M., Schneider R. J., Inghirami G., Coleman C. N., Formenti S. C., Demaria S., Nat. Commun., 2017, 8(1), 15618 |
47 | Cao Y. H., Ding S. S., Hu Y. P., Zeng L. J., Zhou J. R., Lin L. L., Zhang X., Ma Q. H., Cai R. L., Zhang Y., Duan G. J., Bian X. W., Tian G., ACS Nano, 2024, 18(5), 4189—4204 |
48 | Lu X. X., Xue C., Dong J. H., Zhang Y. Z., Gao F., J. Mater. Chem. B, 2024, 12(13), 3209—3225 |
49 | Ding F. X., Liu J. Y., Ai K. L., Xu C., Mao X. Y., Liu Z. Q., Xiao H. H., Adv. Mater., 2024, 36(7), 2306419 |
50 | Zhang M., Wang L., Liu H., Wang Z., Feng W., Jin H., Liu S., Lan S., Liu Y., Zhang H., ACS Appl. Bio Mater., 2022, 5(5), 2365—2376 |
51 | Huang X. Y., Lu Y., Guo M. X., Du S. Y., Han N., Theranostics, 2021, 11(15), 7546—7569 |
52 | Ling K., Zheng J. T., Jiang X. H., Huang W. J., Mai Y. Q., Liao C. H., Fan S. T., Bu J. L., Li R., Zeng B. C., Zheng Q. N., Huang R. B., Li Z. Y., Wong N. K., Jiang H. Y., ACS Nano, 2024, 18(4), 2841—2860 |
53 | Pan X. T., Wang H. Y., Wang S. H., Sun X., Wang L. J., Wang W. W., Shen H. Y., Liu H. Y., Sci. China Life Sci., 2018, 61(4), 415—426 |
54 | Pan X. T., Bai L. X., Wang H., Wu Q. Y., Wang H. Y., Liu S., Xu B. L., Shi X. H., Liu H. Y., Adv. Mater., 2018, 30(23), 1800180 |
55 | Yu J., He S., Zhang C., Xu C., Huang J., Xu M., Pu K., Angew Chem. Int. Ed., 2023, 62(32), e202307272 |
[1] | 付燚盈, 许文哲, 荣莉, 刘树威. 白藜芦醇纳米颗粒结合可溶性微针用于瘢痕疙瘩治疗[J]. 高等学校化学学报, 2025, 46(1): 148. |
[2] | 何扩, 丁彬彬, 马平安, 林君. 纳米材料诱导肿瘤细胞铜死亡的研究进展[J]. 高等学校化学学报, 2025, 46(1): 20230525. |
[3] | 李瑶, 翟婉莹, 王征, 张葆鑫, 赵燕军. 超声调控的细胞膜表面氧化还原反应促进纳米粒摄取和内涵体逃逸[J]. 高等学校化学学报, 2025, 46(1): 130. |
[4] | 王天缘, 张华真, 赵聘, 王凯, 林敏. 海藻酸钠稳定金纳米簇的肾脏清除[J]. 高等学校化学学报, 2025, 46(1): 172. |
[5] | 赵启轩, 马骏, 刘爱江, 梁骁, 李全顺. 核糖核酸酶A表面原位聚合构建抗肿瘤纳米胶囊研究[J]. 高等学校化学学报, 2025, 46(1): 139. |
[6] | 张荡, 孙小敏, 杨海跃, 宋勃翰, 丛萌, 王宇新, 丁锋, 徐珊珊, 毕赛, 王磊. 基于纳米酶的微纳米马达在智能药物递送中的应用[J]. 高等学校化学学报, 2025, 46(1): 76. |
[7] | 安要龙, 李子恒, 吴富根. 自组装纳米胶束通过增加药物积累和延长滞留时间用于肿瘤光动力治疗[J]. 高等学校化学学报, 2025, 46(1): 106. |
[8] | 梁惠闲, 王淼, 张雨璨, 白丽, 李雪妹, 于法标, 程子译, 赵琳璐. 基于Ag2S量子点的光热治疗协同药物治疗在动脉粥样硬化中的应用[J]. 高等学校化学学报, 2025, 46(1): 196. |
[9] | 王美伊茗, 李响, 石皓天, 骆昱超, 徐斌, 田文晶. 葡萄糖氧化酶与替拉扎明纳米胶囊用于肿瘤乏氧治疗[J]. 高等学校化学学报, 2025, 46(1): 117. |
[10] | 陈俊年, 张海峰, 王海兵, 杨火诚, 罗忠. 基于超分子纳米递送系统的精准医疗研究进展[J]. 高等学校化学学报, 2025, 46(1): 20240267. |
[11] | 董远, 马养民, 马思悦, 孙任伟. 基于薯蓣皂苷元催化合成N-甲基吲哚孕烯醇酮化合物及其抗肿瘤活性[J]. 高等学校化学学报, 2024, 45(4): 20230449. |
[12] | 王秀军, 姜文韬, 何景粱, 陈慧杰, 乔悦, 王德伟, 王炳岩, 侯啸, 刘伟, 耿婷, 张思懿, 刘星, 马少杰, 刘彬, 杨明利, 吉敬. 胡椒碱-双环酰胺衍生物的设计、 合成及抗宫颈癌活性[J]. 高等学校化学学报, 2024, 45(4): 20230520. |
[13] | 朱歌, 李知涵, 刘堃, 孙天盟. 铝纳米粉末活化树突状细胞的作用[J]. 高等学校化学学报, 2023, 44(2): 20220602. |
[14] | 王晓斌, 王瑞颖, 董雪, 严莉莉, 张娟, 顾一飞, 程青芳, 薛伟. 含香豆素结构的1,4-戊二烯-3-酮类衍生物的合成及生物活性[J]. 高等学校化学学报, 2023, 44(12): 20230337. |
[15] | 李印, 刘劲松, 王禹, 祁婷婷, 孟乐园, 张晶, 吕冬梅, 焦虎平. 芘二聚体发夹探针用于细胞DNA单链断裂修复能力的评估[J]. 高等学校化学学报, 2023, 44(11): 20230288. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||