高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (8): 20220167.doi: 10.7503/cjcu20220167
收稿日期:
2022-03-20
出版日期:
2022-08-10
发布日期:
2022-05-11
通讯作者:
张威,唐云
E-mail:w_zhang@fudan.edu.cn;yuntang@fudan.edu.cn
基金资助:
GUO Cheng1, ZHANG Wei1,2(), TANG Yun1(
)
Received:
2022-03-20
Online:
2022-08-10
Published:
2022-05-11
Contact:
ZHANG Wei,TANG Yun
E-mail:w_zhang@fudan.edu.cn;yuntang@fudan.edu.cn
Supported by:
摘要:
有序介孔材料是指孔径在2~50 nm之间的多孔材料, 是一类具有均匀孔径、 高有序度纳米孔道和高比表面积的新材料. 在过去30年里, 有序介孔材料的研究取得了长足的进步, 在可控合成、 结构设计和调控及功能化等方面形成了系统的理论. 同时, 其应用领域也不断被拓展, 包括能源存储与转化、 催化、 生物医药和传感等方面. 本文首先回顾了有序介孔材料的发展历史, 简要介绍发展过程中“里程碑式”的研究工作; 然后根据构效关系总结了其在不同领域应用的最新进展; 最后讨论了有序介孔材料领域进一步发展所面临的挑战与机遇, 并对未来前景进行了展望.
中图分类号:
TrendMD:
郭程, 张威, 唐云. 有序介孔材料: 历史、 现状与发展趋势. 高等学校化学学报, 2022, 43(8): 20220167.
GUO Cheng, ZHANG Wei, TANG Yun. Ordered Mesoporous Materials: History, Progress and Perspective. Chem. J. Chinese Universities, 2022, 43(8): 20220167.
Fig.3 TEM images of the calcined hexagonal SBA?15 mesoporous silica with different average pore sizes(A—D) and the small?angle XRD patterns of the as?synthesized and calcined mesoporous silica SBA?15(E)[14]Copyright 1998, American Association for the Advancement of Science.
Fig.5 General scheme of the “acid?base pair” concept and guided synthetic routes for mesoporous minerals(A), TEM images of cubic bicontinuous(Ia3d) TiPO(B), hexagonal(p6m) TiPO(C), hexagonal(p6m) AlPO(D), cubic(Im3m) ZrPO(E), cubic(Im3m) NbPO(F) and hexagonal(p6m) CePO(G)[21]All scale bars represent 100 nm. Copyright 2003, Springer Nature.
Fig.7 EISA, aqueous, and hydrothermal synthesis of mesoporous polymers or carbons with diverse mesostructures and morphologies(A—C) are adopted with permission from Ref. [22]. Copyright 2005, Wiley-VCH. (D) is adopted with permission from Ref. [69]. Copyright 2011, Wiley-VCH. (E) is adopted with permission from Ref. [27]. Copyright 2013, American Chemical Society. (F) is adopted with permission from Ref. [67]. Copyright 2019,. American Chemical Society.
Fig.11 Schematic illustration of synthesis process of mesoporous TiO2 phase junctions via a facile coordination?mediated self?assembly strategy(A), H2 evolution rates under AM 1.5G(B) and visible?light(λ>400 nm)(C) of the mesoporous TiO2 microspheres with different phase compositions, schematic diagram illustrating the process of H2 evolution across the mesoporous TiO2 phase junctions(D)[97], H2 evolution rates(E) and photocatalytic CO2 reduction activities of pristine and defective mesoporous TiO2 microspheres under visible?light(λ>400 nm)(F) and schematic diagram illustrating the photocatalytic process of across the defective mesoporous TiO2 microspheres(G)[102](A—D) Copyright 2019, the Royal Society of Chemistry; (E—G) Copyright 2019, Elsevier.
Fig.12 Schematic illustration of the 3D mesoscopic TiO2 design in pseudocapacitive charge storage(A),FESEM image of the anode using meso?TiO2(scale bar: 10 μm)(B), photograph of the meso?TiO2 with different mesoporosities, hollow TiO2 spheres(H?SP), TiO2 nanoparticles(NPs) at ca.100 and ca.10 nm in diameter, and meso?TiO2 microspheres calcined in air(all vials contain 200 mg of tightly packed powders)(C), charge?discharge profiles of the meso?TiO2 anodes with different mesoporosities at a current density of 0.025 A/g(D), comparison of the rate capability of the meso?TiO2 and hollow TiO2 electrodes(E) and cycling stabilities of the five meso?TiO2 electrodes after 5000 charge?discharge cycles at a current density of 1.0 A/g(F)[110]Copyright 2021, American Chemical Society.
Fig.13 Schematic illustration of ionic transport and Li deposition behaviors with various separators[111](A) SS; (B) HMS; (C) PP. Copyright 2022, Wiley-VCH.
Fig.14 Schematic illustration of the synthetic procedure for magnetite nanocrystal/mesoporous silica core?shell nanoparticles(A), dispersion of Fe3O4@mSiO2 in water under white light(B) and UV light(C), photographic image and corresponding fluorescence image of several organs and the xenograft tumor 24 h after intravenous injection(D) [127]Copyright 2008, Wiley-VCH.
Fig.15 Sketch of the structure of a side?heated gas sensor on MC?WO3?NWAs(A), diagram of the interaction between acetone molecules and Si?doped ε?WO3 nanowires(B), schematic diagram of the mechanism for acetone?gas sensing(C), response of the sensor to 50?ppm(1 ppm=1 mL/m3) acetone at different temperatures(Ec, conduction band edge; Ev, valence band edge)(D), response?recovery curve of the sensor to acetone at different concentrations(1.0—400?ppm) at 300?℃(E), response(S=Ra/Rg) of the sensor versus acetone concentrations(F), response?recovery curve of the sensor to 50 ppm of acetone at 300?℃(G), responses of the sensor to different 50?ppm gases at 300?℃(for example, S=16 for 50?ppm ethanol and S=21 for 50?ppm H2S)(H) and repeating response?recovery curve of the sensor to 50?ppm acetone(I) [137]Copyright 2020, Springer Nature.
1 | Kitagawa S., Acc. Mater. Res., 2017, 50(3), 514—516 |
2 | Liu P., Chen G. F., Porous Materials: Processing and Applications, Elsevier, Amsterdam, 2014 |
3 | Kitagawa S., Porous Materials and the Age of Gas, Wiley Online Library, 2015, 54, 10686—10687 |
4 | Ryoo R., Nature, 2019, 575, 40—41 |
5 | Ciesla U., Schüth F., Micropor. Mesopor. Mater., 1999, 27(2/3), 131—149 |
6 | Suib S. L., Chem. Rev., 2017, 17(12), 1169—1183 |
7 | Linares N., Silvestre⁃Albero A. M., Serrano E., Silvestre⁃Albero J., García⁃Martínez J., Chem. Soc. Rev., 2014, 43(22), 7681—7717 |
8 | Perego C., Millini R., Chem. Soc. Rev., 2013, 42(9), 3956—3976 |
9 | Kresge C., Leonowicz M., Roth W. J., Vartuli J., Beck J., Nature, 1992, 359(6397), 710—712 |
10 | Duan L., Wang C., Zhang W., Ma B., Deng Y., Li W., Zhao D., Chem. Rev., 2021, 121(23), 14349—14429 |
11 | Zhao T., Chen L., Lin R., Zhang P., Lan K., Zhang W., Li X., Zhao D., Acc. Mater. Res., 2020, 1(1), 100—114 |
12 | Zu L., Zhang W., Qu L., Liu L., Li W., Yu A., Zhao D., Adv. Energy Mater., 2020, 10(38), 2002152 |
13 | Lu Y., Ganguli R., Drewien C. A., Anderson M. T., Brinker C. J., Gong W., Guo Y., Soyez H., Dunn B., Huang M. H., Nature, 1997, 389(6649), 364—368 |
14 | Zhao D., Feng J., Huo Q., Melosh N., Fredrickson G. H., Chmelka B. F., Stucky G. D., Science, 1998, 279(5350), 548—552 |
15 | Yang P., Zhao D., Margolese D. I., Chmelka B. F., Stucky G. D., Nature, 1998, 396(6707), 152—155 |
16 | Yang P., Deng T., Zhao D., Feng P., Pine D., Chmelka B. F., Whitesides G. M., Stucky G. D., Science, 1998, 282(5397), 2244—2246 |
17 | Ryoo R., Joo S. H., Jun S., J. Phys. Chem. B, 1999, 103(37), 7743—7746 |
18 | Han S., Hyeon T., Chem. Commun., 1999, 35(19), 1955—1956 |
19 | Asefa T., MacLachlan M., Coombs N., Ozin G. A., Nature, 1999, 402(6764), 867—871 |
20 | Eddaoudi M., Kim J., Rosi N., Vodak D., Wachter J., O’Keeffe M., Yaghi O., Science, 2002, 295(5554), 469—472 |
21 | Tian B., Liu X., Tu B., Yu C., Fan J., Wang L. Xie S., Stucky G. D., Zhao D., Nat. Mater., 2003, 2(3), 159—163 |
22 | Meng Y., Gu D., Zhang F., Shi Y.,Yang H., Li Z. Yu C., Tu B., Zhao D., Angew. Chem. Int. Ed., 2005, 44(43), 7053—7059 |
23 | Lee J., Christopher Orilall M., Warren S. C., Kamperman M., Disalvo F. J., Wiesner U., Nat. Mater., 2008, 7(3), 222—228 |
24 | Fang Y., Hu H., J. Am. Chem. Soc., 2006, 128(33), 10636—10637 |
25 | Zhao Y., Zhang J., Han B., Song J., Li J., Wang Q., Angew. Chem. Int. Ed., 2011, 50(3), 636—639 |
26 | Na K., Jo C., Kim J., Cho K., Jung J., Seo Y., Messinger R. J., Chmelka B. F., Ryoo R., Science, 2011, 333(6040), 328—332 |
27 | Fang Y., Lv Y., Che R., Wu H., Zhang X., Gu D., Zheng G., Zhao D., J. Am. Chem. Soc., 2013, 135(4), 1524—1530 |
28 | Zhao Z., Wang X., Jing X., Zhao Y., Lan K., Zhang W., Duan L., Guo D., Wang C., Peng L., Zhang X., An Z., Li W., Nie Z., Fan C., Zhao. D., Adv. Mater., 2021, 33(23), 2100820 |
29 | Li W., Zhao D., Chem. Commun., 2013, 49(10), 943—946 |
30 | Yanagisawa T., Shimizu T., Kuroda K., Kato C., Bull. Chem. Soc. Jpn., 1990, 63(4), 988—992 |
31 | Liu Y., Goebl J., Yin Y., Chem. Soc. Rev., 2013, 42(7), 2610—2653 |
32 | Malgras V., Ji Q., Kamachi Y., Mori T., Shieh F. K., Wu K. C. W., Ariga K., Yamauchi Y., Bull. Chem. Soc. Jpn., 2015, 88(9), 1171—1200 |
33 | Zhang Q., Wang W., Goebl J., Yin Y., Nano Today, 2009, 4(6), 494—507 |
34 | Xiao X., Song H., Lin S., Zhou Y., Zhan X., Hu Z., Zhang Q., Sun J., Yang B., Li T., Nat. Commun., 2016, 7(1), 1—8 |
35 | Ogawa M., Chem. Commun., 1996, 32(10), 1149—1150 |
36 | Inagaki S., Fukushima Y., Kuroda K., Chem. Commun., 1993, 29(8), 680—682 |
37 | Wan Y., Zhao D., Chem. Rev., 2007, 107(7), 2821—2860 |
38 | Zhao D., Yang P., Huo Q., Curr. Opin. Solid St. M., 1998, 3(1), 111—121 |
39 | Olkhovyk O., Jaroniec M., J. Am. Chem. Soc., 2005, 127(1), 60—61 |
40 | Hoffmann F., Froba M., Chem. Soc. Rev., 2011, 40(2), 608—620 |
41 | Wan Y., Shi Y., Zhao D., Chem. Commun., 2007, 43(9), 897—926 |
42 | Wan Y., Shi Y., Zhao D., Chem. Mater., 2008, 20(3), 932—945 |
43 | Zhou W., Hunter H. M., Wright P. A., Ge Q., Thomas J. M., J. Phys. Chem. B, 1998, 102(36), 6933—6936 |
44 | Göltner C., Weissenberger M., Acta Polym., 1998, 49(12), 704—709 |
45 | Shi Y., Wan Y., Tu B., Zhao D., J. Phys. Chem. C, 2008, 112(1), 112—116 |
46 | Shi Y., Wan Y., Liu R., Tu B., Zhao D., J. Am. Chem. Soc., 2007, 129(30), 9522—9531 |
47 | Lu A. H., Schüth F., Adv. Mater., 2006, 18(14), 1793—1805 |
48 | Yang H., Zhao D., J. Mater. Chem., 2005, 15(12), 1217—1231 |
49 | Zhang X., Weng W., Gu H., Hong Z., Xiao W., Wang F., Li W., Gu D., Adv. Mater., 2022, 34(2), 2104427 |
50 | Xiong Y., Gu D., Deng X., Tüysüz H., van Gastel M., Schüth F., Marlow F., Micropor. Mesopor. Mater., 2018, 268, 162—169 |
51 | Gu D., Schmidt W., Pichler C. M., Bongard H. J., Spliethoff B., Asahina S., Cao Z., Terasaki O., Schüth F., Angew. Chem. Int. Ed., 2017, 56(37), 11222—11225 |
52 | Shi Y., Wan Y., Zhai Y., Liu R., Meng Y., Tu B., Zhao D., Chem. Mater., 2007, 19(7), 1761—1771 |
53 | Zhao D., Sun J., Li Q., Stucky G. D., Chem. Mater., 2000, 12(2), 275—279 |
54 | Melde B. J., Holland B. T., Blanford C. F., Stein A., Chem. Mater., 1999, 11(11), 3302—3308 |
55 | Asefa T., MacLachlan M. J., Coombs N., Ozin G. A., Nature, 1999, 402(6764), 867—871 |
56 | Zou Y., Zhou X., Ma J., Yang X., Deng Y., Chem. Soc. Rev., 2020, 49(4), 1173—1208 |
57 | Li Y., Luo W., Qin N., Dong J., Wei J., Li W., Feng S., Chen J., Xu J., Elzatahry A. A., Angew. Chem. Int. Ed., 2014, 126(34), 9181—9186 |
58 | Luo W., Li Y., Dong J., Wei J., Xu J., Deng Y., Zhao D., Angew. Chem. Int. Ed., 2013, 125(40), 10699—10704 |
59 | Szczęśniak B., Choma J., Jaroniec M., Chem. Commun., 2020, 56(57), 7836—7848 |
60 | Jang J., Bae J., Chem. Commun., 2005, 41(9), 1200—1202 |
61 | Lee K. T., Oh S. M., Chem. Commun., 2002, 38(22), 2722—2723 |
62 | Tanaka S., Nishiyama N., Egashira Y., Ueyama K., Chem. Commun., 2005, 41(16), 2125—2127 |
63 | Liu J., Wickramaratne N. P., Qiao S. Z., Jaroniec M, Nat. Mater., 2015, 14(8), 763—774 |
64 | Zhong M., Kim E. K., McGann J. P., Chun S. E., Whitacre J. F., Jaroniec M., Matyjaszewski K., Kowalewski T., J. Am. Chem. Soc., 2012, 134(36), 14846—14857 |
65 | Liang C., Dai S., J. Am. Chem. Soc., 2006, 128(16), 5316—5317 |
66 | Zhang F., Meng Y., Gu D., Yan Y., Yu C., Tu B., Zhao D., J. Am. Chem. Soc., 2005, 127(39), 13508—13509 |
67 | Peng L., Hung C. T., Wang S., Zhang X., Zhu X., Zhao Z., Wang C., Tang Y., Li W., Zhao D., J. Am. Chem. Soc., 2019, 141(17), 7073—7080 |
68 | Fang Y., Gu D., Zou Y., Wu Z., Li F., Che R., Deng Y., Tu B., Zhao D., Angew. Chem. Int. Ed., 2010, 49(43), 7987—7991 |
69 | Li W., Zhang F., Dou Y., Wu Z., Liu H., Qian X., Gu D., Xia Y., Tu B., Zhao, D., Adv. Energy Mater., 2011, 1(3), 382—386 |
70 | Zhang P., Wang L., Yang S., Schott J. A., Liu X., Mahurin S. M., Huang C., Zhang Y., Fulvio P. F., Chisholm M. F., Dai S., Nat. Commun., 2017, 8(1), 1—10 |
71 | Liu D., Zou D., Zhu H., Zhang J., Small, 2018, 14(37), 1801454 |
72 | Li K., Yang J., Huang R., Lin S.,Gu. J., Angew. Chem. Int. Ed., 2020, 132(33), 14124—14128 |
73 | Yang J., Li K., Li C., Gu J., Angew. Chem. Int. Ed., 2020, 132(51), 22952—22956 |
74 | Li K., Zhao Y., Yang J., Gu J., Nat. Commun., 2022, 13(1),1—8 |
75 | Korde A., Min B., Kapaca E., Knio O., Nezam I., Wang Z., Leisen J., Yin X., Zhang X., Sholl D.S., Zou X., Willhammar T., Jones C. W., Nair S., Science, 2022, 375(6576), 62—66 |
76 | Lin Q. F., Gao Z. R., Lin C., Zhang S. Y., Chen J. F., Li Z. Q., Liu X. L., Fan W., Li J., Chen X. B., Camblor M. A., Chen F. J., Science, 2021, 374(6575), 1605—1608 |
77 | Zhao T., Elzatahry A., Li X., Zhao D., Nat. Rev. Mater., 2019, 4(12), 775—791 |
78 | Lan K., Xia Y., Wang R., Zhao Z., Zhang W., Zhang X., Elzatahry A., Zhao D., Matter, 2019, 1(2), 527—538 |
79 | Lan K., Liu Y., Zhang W., Liu Y., Elzatahry A., Wang R., Xia Y., Al-Dhayan D., Zheng N., Zhao D., J. Am. Chem. Soc., 2018, 140(11), 413—4143 |
80 | Liu L., Yang X. Xie Y., Liu H., Zhou X., Xiao X., Ren Y., Ma Z., Cheng X., Deng Y., Adv. Mater., 2020, 32(10), 1906653 |
81 | Wu Y., Zhang Y., Zhou J., Gu D., Emergent Mater., 2020, 3(3), 247—266 |
82 | Li W., Liu J., Zhao D., Nat. Rev. Mater., 2016, 1(6), 1—17 |
83 | Zhang W., Zhu K., Ren W., He H., Liang H., Zhai Y., Li W., Adv. Mater. Interfaces, 2022, 9(3), 2101528 |
84 | Li C., Li Q., Kaneti Y. V., Hou D., Yamauchi Y., Mai Y., Chem. Soc. Rev., 2020, 49(14), 4681—4736 |
85 | Qian X., Xiong D., Asiri A. M., Khan S. B., Rahman M. M., Xu H., Zhao D., J. Mater. Chem. A, 2013, 1(25), 7525—7532 |
86 | Lv Y., Qian X., Tu B., Zhao D., Catal. Today, 2013, 204, 2—7 |
87 | Qian X., Li B., Hu Y. Y., Niu G. X., Deng Y., Che R., Tang Y., Su D., Asiri A. M., Zhao D. Y., Chem. Eur. J., 2012, 18(3), 931—939 |
88 | Qian X., Du J., Li B., Si M., Yang Y., Hu Y., Niu G., Zhang Y., Xu H., Tu B., Chem. Sci., 2011, 2(10), 2006—2016 |
89 | Zhou W., Li W., Wang J. Q., Qu Y., Yang Y., Xie Y.,Zhang K., Wang L., Fu H., Zhao D., J. Am. Chem. Soc., 2014, 136(26), 9280—9283 |
90 | Ismail A. A., Bahnemann D. W., J. Mater. Chem., 2011, 21(32), 11686—11707 |
91 | Zhang W., Tian Y., He H., Xu L., Li W., Zhao D., Natl. Sci. Rev., 2020, 7(11), 1702—1725 |
92 | Zhang W., He H., Li H., Duan L., Zu L., Zhai Y., Li W., Wang L., Fu H., Zhao D., Adv. Energy Mater., 2021, 11(15), 2003303 |
93 | Ide Y., Inami N., Hattori H., Saito K., Sohmiya M., Tsunoji N., Komaguchi K., Sano T., Bando Y., Golberg D., Angew. Chem. Int. Ed., 2016, 55(11), 3600—3605 |
94 | Zhang J., Xu Q., Feng Z., Li M., Li C., Angew. Chem. Int. Ed., 2008, 120(9), 1790—1793 |
95 | Liu G., Yan X., Chen Z., Wang X., Wang L., Lu G. Q., Cheng H. M., J. Mater. Chem., 2009, 19(36), 6590—6596 |
96 | Kawahara T., Konishi Y., Tada H., Tohge N., Nishii J., Ito S., Angew. Chem.Int. Ed., 2002, 114(15), 2935—2937 |
97 | Zhang W., He H., Tian Y., Lan K., Liu Q., Wang C., Liu Y., Elzatahry A., Che R., Li W., Zhao D., Chem. Sci., 2019, 10(6), 1664—1670 |
98 | Liu X., Zhu G., Wang X., Yuan X., Lin T., Huang F., Adv. Energy Mater., 2016, 6(17), 1600452 |
99 | Chen X., Liu L., Huang F., Chem. Soc. Rev., 2015, 44(7), 1861—1885 |
100 | Chen X., Liu L., Yu P. Y., Mao S. S., Science, 2011, 331(6018), 746—750 |
101 | Wang Z., Yang C., Lin T., Yin H., Chen P., Wan D., Xu F., Huang F., Lin J., Xie X., Jiang M., Energy Environ. Sci., 2013, 6(10), 3007—3014 |
102 | Zhang W., He H., Tian Y., Li H., Lan K., Zu L., Xia Y., Duan L., Li W., Zhao D., Nano Energy, 2019, 66, 104113 |
103 | Walcarius A., Chem. Soc. Rev., 2013, 42(9), 4098—4140 |
104 | Kim H., Seo M., Park M. H., Cho J., Angew. Chem. Int. Ed., 2010, 49(12), 2146—2149 |
105 | Liu N., Lu Z., Zhao J., McDowell M. T., Lee H. W., Zhao W., Cui Y., Nat. Nanotechnol., 2014, 9(3), 187—192 |
106 | Zhang R., Du Y., Li D., Shen D., Yang J., Guo Z., Liu H. K., Elzatahry A. A., Zhao D., Adv. Mater., 2014, 26(39), 6749—6755 |
107 | Luo W., Chen X., Xia Y., Chen M., Wang L., Wang Q., Li W., Yang J., Adv. Energy Mater., 2017, 7(24), 1701083 |
108 | Yang J., Wang Y. X., Chou S. L., Zhang R., Xu Y., Fan J., Zhang W.X., Liu H. K., Zhao D., Dou S. X., Nano Energy, 2015, 18, 133—142 |
109 | Wang J., Xia Y., Liu Y., Li W., Zhao D., Energy Storage Mater., 2019, 22, 147—153 |
110 | Lan K., Liu L., Zhang J. Y., Wang R., Zu L., Lv Z., Wei Q., Zhao D., J. Am. Chem. Soc., 2021, 143(35), 14097—14105 |
111 | Wang J., Liu Y., Cai Q., Dong A., Yang D., Zhao D., Adv. Mater., 2022, 34(3), 2107957 |
112 | Zhao T., Nguyen N. T., Xie Y., Sun X., Li Q., Li X., Front. Chem., 2017, 5, 118 |
113 | Möller K., Bein T., Chem. Mater., 2017, 29(1), 371—388 |
114 | Manzano M., Vallet⁃Regí M., Adv. Funct. Mater., 2020, 30(2), 1902634 |
115 | Tang F., Li L., Chen D., Adv. Mater., 2012, 24(12), 1504—1534 |
116 | Chen W., Glackin C. A., Horwitz M. A., Zink J. I., Acc. Mater. Res., 2019, 52(6), 1531—1542 |
117 | Danhier F., Ansorena E., Silva J. M., Coco R., Le Breton A., Préat V., J. Control. Release, 2012, 161(2), 505—522 |
118 | Wang S., Micropor. Mesopor. Mater., 2009, 117(1), 1—9 |
119 | García⁃Fernández A., Aznar E., Martínez⁃Máñez R., Sancenón F., Small, 2020, 16(3), 1902242 |
120 | Castillo R. R., Lozano D., González B., Manzano M., Izquierdo⁃Barba I., Vallet⁃Regí M., Expert Opin. Drug Del., 2019, 16(4), 415—439 |
121 | Kankala R. K., Han Y. H., Na J., Lee C. H., Sun Z., Wang S. B., Kimura T., Ok Y. S., Yamauchi Y., Chen A. Z., Wu K. C. W., Adv. Mater., 2020, 32(23), 1907035 |
122 | Yang B., Zhou S., Zeng J., Zhang L., Zhang R., Liang K., Xie L., Shao B., Song S., Huang G., Zhao D., Chen P., Kong B., Nano Res., 2020, 13(4), 1013—1019 |
123 | Lee J. E., Lee N., Kim T., Kim J., Hyeon T., Acc. Mater. Res., 2011, 44(10), 893—902 |
124 | Chen L., Liu M., Zhou Q., Li X., Emergent Mater., 2020, 3(3), 381—405 |
125 | Yao C., Wang P., Li X., Hu X., Hou J., Wang L., Zhang F., Adv. Mater., 2016, 28(42), 9341—9348 |
126 | Liu J. N., Bu W. B., Shi J. L., Acc. Chem. Res., 2015, 48(7), 1797—1805 |
127 | Kim J., Kim H. S., Lee N., Kim T., Kim H., Yu T., Song I. C., Moon W. K., Hyeon T., Angew. Chem. Int. Ed., 2008, 120(44), 8566—8569 |
128 | Zhao T., Chen L., Li Q., Li X., J. Mater. Chem. B, 2018, 6(44), 7112—7121 |
129 | Huo M., Wang L., Wang Y., Chen Y., Shi J., ACS Nano, 2019, 13(2), 2643—2653 |
130 | Quail D. F., Joyce J. A., Nat. Med., 2013, 19(11), 1423—1437 |
131 | Nguyen T. L., Choi Y., Kim J., Adv. Mater., 2019, 31(34), 1803953 |
132 | Luo W., Zhao T., Li Y., Wei J., Xu P., Li X., Wang Y., Zhang W., Elzatahry A. A., Alghamdi, A., Deng Y., Wang L., Jiang W., Liu Y., Kong B., Zhao D., J. Am. Chem. Soc., 2016, 138(38), 12586—12595 |
133 | Wagner T., Haffer S., Weinberger C., Klaus D., Tiemann M., Chem. Soc. Rev., 2013, 42(9), 4036—4053 |
134 | Zou Y., Zhou X., Zhu Y., Cheng X., Zhao D., Deng Y., Acc. Chem. Res., 2019, 52(3), 714—725 |
135 | Zhou X., Cheng X., Zhu Y., Elzatahry A. A., Alghamdi A., Deng Y., Zhao D., Chin. Chem. Lett., 2018, 29(3), 405—416 |
136 | Zhu Y., Zhao Y., Ma J., Cheng X., Xie J., Xu P., Liu H., Liu H., Zhang H., Wu M., J. Am. Chem. Soc., 2017, 139(30), 10365—10373 |
137 | Ren Y., Zou Y., Liu Y., Zhou X., Ma J., Zhao D., Wei G., Ai Y., Xi S., Deng Y., Nat. Mater., 2020, 19(2), 203—211 |
138 | Ren Y., Xie W., Li Y., Ma J., Li J., Liu Y., Zou Y., Deng Y., ACS Central Sci., 2021, 7(11), 1885—1897 |
139 | Villasmil W., Fischer L. J., Worlitschek J., Renew. Sust. Energ. Rev., 2019, 103, 71—84 |
140 | Zhang X., Ni X., Li C., You B., Sun G., J. Mater. Chem. A, 2020, 8(19), 9701—9712 |
141 | Ghedini E., Menegazzo F., Manzoli M., Di Michele A., Puglia D., Signoretto M., Molecules, 2019, 24(23), 4226 |
142 | Ha T. J., Park H. H., Jang H. W., Yoon S. J., Shin S., Cho H. H., Micropor. Mesopor. Mater., 2012, 158, 123—128 |
143 | Gu W., Sheng J., Huang Q., Wang G., Chen J., Ji G., Nano⁃Micro Lett., 2021, 13(1), 1—14 |
144 | Shioura N., Matsushima K., Osato T., Ueno T., Isu, N., Hashimoto T., Yana T., MRS Adv., 2020, 5(34), 1791—1798 |
[1] | 江博文, 陈敬轩, 成永华, 桑微, 寇宗魁. 单原子材料在电化学生物传感中的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220334. |
[2] | 李玉龙, 谢发婷, 管燕, 刘嘉丽, 张贵群, 姚超, 杨通, 杨云慧, 胡蓉. 基于银离子与DNA相互作用的比率型电化学传感器用于银离子的检测[J]. 高等学校化学学报, 2022, 43(8): 20220202. |
[3] | 王君旸, 刘争, 张茜, 孙春燕, 李红霞. DNA银纳米簇在功能核酸荧光生物传感器中的应用[J]. 高等学校化学学报, 2022, 43(6): 20220010. |
[4] | 魏闯宇, 陈艳丽, 姜建壮. 基于乙硫基取代的三层酞菁铕二聚体修饰ITO电极构筑电化学多巴胺和尿酸传感器[J]. 高等学校化学学报, 2022, 43(1): 20210582. |
[5] | 马鉴新, 刘晓东, 徐娜, 刘国成, 王秀丽. 一种具有发光传感、 安培传感和染料吸附性能的多功能Zn(II)配位聚合物[J]. 高等学校化学学报, 2022, 43(1): 20210585. |
[6] | 李然, 张旭东, 穆丽丹, 孙童, 艾刚刚, 沙夜龙, 张玉琦, 王记江. 三联噻吩衍生物功能化SiO2反蛋白石光子晶体荧光薄膜的制备及应用[J]. 高等学校化学学报, 2021, 42(9): 2989. |
[7] | 赵凌云, 黄汉雄, 罗杜宇, 苏逢春. 复合材料柔软性对倒金字塔微结构阵列传感器性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2953. |
[8] | 潘晓君, 鲍容容, 潘曹峰. 可穿戴柔性触觉传感器的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2359. |
[9] | 蔡雅倩, 张家怀, 刘方哲, 李海潮, 石建平, 关爽. Hofmeister效应辅助的蛋白质基水凝胶应变传感器[J]. 高等学校化学学报, 2021, 42(8): 2609. |
[10] | 吴杨仪, 陈建平, 艾益静, 汪庆祥, 高飞, 高凤. 2-(2-羟基-3-甲氧基苯基)-C60的合成及在花椰菜花叶病毒启动子DNA传感检测中的应用[J]. 高等学校化学学报, 2021, 42(6): 1754. |
[11] | 徐梦祎, 黄雪雯, 李小杰, 魏玮, 刘晓亚. “串珠状”复合纳米组装体修饰丝网印刷电极构建的生物传感器[J]. 高等学校化学学报, 2021, 42(6): 1768. |
[12] | 杨瑞琪, 于欣, 刘宏. 四氧化三锡基光催化纳米材料的研究进展[J]. 高等学校化学学报, 2021, 42(5): 1340. |
[13] | 姬少博, 陈晓东. 柔性电子学中的表界面化学[J]. 高等学校化学学报, 2021, 42(4): 1074. |
[14] | 王杰, 李莹, 邵亮, 白阳, 马忠雷, 马建中. 聚乙烯醇/聚吡咯复合导电水凝胶应变传感器的制备及性能[J]. 高等学校化学学报, 2021, 42(3): 929. |
[15] | 沙卉雯, 马维廷, 周晓娟, 宋卫星. 激光诱导三维网状石墨烯的一步法制备及应用[J]. 高等学校化学学报, 2021, 42(2): 607. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||