高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (8): 20220179.doi: 10.7503/cjcu20220179
收稿日期:
2022-03-22
出版日期:
2022-08-10
发布日期:
2022-04-18
通讯作者:
蒋乔,丁宝全
E-mail:jiangq@nanoctr.cn;dingbq@nanoctr.cn
基金资助:
WU Yushuai1,2, SHANG Yingxu2, JIANG Qiao2(), DING Baoquan1,2(
)
Received:
2022-03-22
Online:
2022-08-10
Published:
2022-04-18
Contact:
JIANG Qiao,DING Baoquan
E-mail:jiangq@nanoctr.cn;dingbq@nanoctr.cn
Supported by:
摘要:
在过去的几十年里, DNA纳米技术作为一种快速发展的可控自组装技术, 使人们能构建出各种复杂的纳米结构. DNA折纸结构具备可编程性、 空间可寻址性、 易修饰性及良好的生物相容性等多种优越的特性, 这些优异的性质使其在药物递送方面具有广阔的应用前景. 本文总结了近年来可控自组装DNA折纸结构作为药物递送系统的研究进展, 展望了DNA折纸纳米载体未来的发展方向, 并讨论了该领域面临的挑战和可能的解决方法.
中图分类号:
TrendMD:
仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展. 高等学校化学学报, 2022, 43(8): 20220179.
WU Yushuai, SHANG Yingxu, JIANG Qiao, DING Baoquan. Research Progress of Controllable Self-assembled DNA Origami Structure as Drug Carrier. Chem. J. Chinese Universities, 2022, 43(8): 20220179.
Fig.1 DNA origami as a doxorubicin carrier for circumvention of drug resistance(A)[42], DNA origami with tunable release properties for cancer treatment(B)[44], targeted DNA origami structure for doxorubicin delivery(C)[45], DNA origami with label?free fluorescent probe for visualization of the intracellular location(D)[48], the cellular uptake efficiency of DNA origami with different mass and shape(E)[49] and BMEPC loaded DNA origami for cancer photodynamic therapy(F)[52](A) Copyright 2012, American Chemical Society; (B) Copyright 2012, American Chemical Society; (C) Copyright 2018, American Chemical Society; (D) Copyright 2012, Royal Society of Chemistry; (E) Copyright 2019, Wiley Online Library; (F) Copyright 2016, American Chemical Society.
Fig.2 CpG motif?coated DNA origami for cellular immunostimulation(A)[55], DNA nanotube as intracellular CpG delivery vehicle(B)[56], Bcl2?targeting siRNA delivered by DNA nanoparticles for suppressing cancer cell growth(C)[61], DNA origami as a long chain nucleic acid delivery carrier for cancer combined therapy(D)[64], aptamer modified DNA origami for sequential therapy of acute kidney injury(E)[66] and DNA origami?based aptamer nanoarray for anticoagulation in hemodialysis(F)[67](A) Copyright 2011, American Chemical Society; (B) Copyright 2015, Elsevier; (C) Copyright 2017, Wiley Online Library;(D) Copyright 2018, American Chemical Society; (E) Copyright 2021, American Chemical Society; (F) Copyright 2020, Springer Nature.
Fig.3 Organizing antigen on DNA origami for B?cell activation(A)[76], clustering of death receptors using DNA origami sheets(B)[80], nanoscale FasL organization on DNA origami to induce cell apoptosis(C)[81], DNA origami carriers for intracellular delivery of RNase A(D)[83], DNA origami platform for cytokine delivery to alleviate acute kidney injury(E)[84] and DNA origami?based icosahedral shell system for virus trapping(F)[85](A) Copyright 2020, Springer Nature; (B) Copyright 2020, American Chemical Society; (C) Copyright 2021, Wiley Online Library;(D) Copyright 2019, American Chemical Society; (E) Copyright 2021, American Chemical Society; (F) Copyright 2021, Springer Nature.
Fig.4 DNA origami?gold nanorod hybrids for enhanced optoacoustic imaging and photothermal therapy(A)[91], DNA origami octahedron for dual enhancement of chemotherapy and photothermal therapy(B)[93], AuNP modified DNA origami structures for visualization of cellular uptake process(C)[94] and DNA origami with peptide?PNA for quantum dot conjugation(D)[96](A) Copyright 2016, Wiley Online Library; (B) Copyright 2021, Wiley Online Library; (C) Copyright 2018, American Chemical Society; (D) Copyright 2021, American Chemical Society.
Fig.5 DNA origami barrel for targeted transport of different payloads(A)[100], DNA origami nanocapsule for pH?controlled opening and cargo exposure(B)[102], acid responsive DNA origami?based vaccine for cancer immunotherapy(C)[57], tubular DNA nanodevice as siRNA/doxorubicin vehicle for cancer combined therapy(D)[103], DNA origami nanofactory for RNA production and processing(E)[104] and DNA nanodevice?based logic gating triggered by antigen(F)[106](A) Copyright 2012, Springer Nature; (B) Copyright 2019, American Chemical Society; (C) Copyright 2020, Springer Nature; (D) Copyright 2020, Wiley Online Library; (E) Copyright 2020, American Chemical Society; (F) Copyright 2021, American Chemical Society.
1 | Davis M. E., Chen Z., Shin D. M., Nat. Rev. Drug Discov., 2008, 7(9), 771—782 |
2 | Gottesman M. M., Annu. Rev. Med., 2002, 53(1), 615—627 |
3 | Scott A. M., Wolchok J. D., Old L. J., Nat. Rev. Cancer, 2012, 12(4), 278—287 |
4 | Fu J., Yu C., Li L., Yao S. Q., J. Am. Chem. Soc., 2015, 137(37), 12153—12160 |
5 | Wang M., Sun S., Neufeld C. I., Perez⁃Ramirez B., Xu Q., Angew. Chem. Int. Ed., 2014, 53(49), 13444—13448 |
6 | Shao D., Li M., Wang Z., Zheng X., Lao Y. H., Chang Z., Zhang F., Lu M., Yue J., Hu H., Yan H., Chen L., Dong W. F., Leong K. W., Adv. Mater., 2018, 30(29), 1801198 |
7 | Li M., Shi C., Zhang H., Long S., Sun W., Du J., Fan J., Peng X., Chem. Res. Chinese Universities, 2021, 37(4), 925—933 |
8 | Zou Y., Zheng M., Yang W., Meng F., Miyata K., Kim H. J., Kataoka K., Zhong Z., Adv. Mater., 2017, 29(42), 1703285 |
9 | Yu T., Liu X., Bolcato⁃Bellemin A. L., Wang Y., Liu C., Erbacher P., Qu F., Rocchi P., Behr J. P., Peng L., Angew. Chem. Int. Ed., 2012, 51(34), 8478—8484 |
10 | Fu A., Tang R., Hardie J., Farkas M. E., Rotello V. M., Bioconjug. Chem., 2014, 25(9), 1602—1608 |
11 | Cheng Y., Chen Q., Guo Z., Li M., Yang X., Wan G., Chen H., Zhang Q., Wang Y., ACS Nano, 2020, 14(11), 15161—15181 |
12 | Qu Y., Yang J., Zhan P., Liu S., Zhang K., Jiang Q., Li C., Ding B., ACS Appl. Mater. Interfaces, 2017, 9(24), 20324—20329 |
13 | Mao H., Xie Y., Ju H., Mao H., Zhao L., Wang Z., Hua L., Zhao C., Li Y., Yu R., Liu H., ACS Appl. Mater. Interfaces, 2018, 10(40), 33923—33935 |
14 | Attia M. F., Anton N., Chiper M., Akasov R., Anton H., Messaddeq N., Fournel S., Klymchenko A. S., Mély Y., Vandamme T. F., ACS Nano, 2014, 8(10), 10537—10550 |
15 | Zaiden M., Rütter M., Shpirt L., Ventura Y., Feinshtein V., David A., Mol. Pharm., 2018, 15(9), 3690—3699 |
16 | Venditto V. J., Szoka F. C., Adv. Drug Deliv. Rev., 2013, 65(1), 80—88 |
17 | Seeman N. C., J. Theor. Biol., 1982, 99(2), 237—247 |
18 | Lee J. B., Peng S., Yang D., Roh Y. H., Funabashi H., Park N., Rice E. J., Chen L., Long R., Wu M., Luo D., Nat. Nanotechnol., 2012, 7(12), 816—820 |
19 | Winfree E., Liu F., Wenzler L. A., Seeman N. C., Nature, 1998, 394(6693), 539—544 |
20 | Zheng J., Birktoft J. J., Chen Y., Wang T., Sha R., Constantinou P. E., Ginell S. L., Mao C., Seeman N. C., Nature, 2009, 461(7260), 74—77 |
21 | Zhang T., Hartl C., Frank K., Heuer⁃Jungemann A., Fischer S., Nickels P. C., Nickel B., Liedl T., Adv. Mater., 2018, 30(28), 1800273 |
22 | Ke Y., Ong L. L., Shih W. M., Yin P., Science, 2012, 338(6111), 1177—1183 |
23 | Wei B., Dai M., Yin P., Nature, 2012, 485(7400), 623—626 |
24 | Zhu G., Hu R., Zhao Z., Chen Z., Zhang X., Tan W., J. Am. Chem. Soc., 2013, 135(44), 16438—16445 |
25 | Yao C., Zhang R., Tang J., Yang D., Nat. Protoc., 2021, 16(12), 5460—5483 |
26 | Li F., Yu W., Zhang J., Dong Y., Ding X., Ruan X., Gu Z., Yang D., Nat. Commun., 2021, 12(1), 1138 |
27 | Yao C., Xu Y., Hu P., Ou J., Yang D., Acc. Mater. Res., 2022, 3(1), 42—53 |
28 | Rothemund P. W. K., Nature, 2006, 440(7082), 297—302 |
29 | Douglas S. M., Chou J. J., Shih W. M., Proc. Natl. Acad. Sci. USA, 2007, 104(16), 6644 |
30 | Engst C. R., Ablay M., Divitini G., Ducati C., Liedl T., Keyser U. F., Nano Lett., 2012, 12(1), 512—517 |
31 | Amir Y., Ben⁃Ishay E., Levner D., Ittah S., Abu⁃Horowitz A., Bachelet I., Nat. Nanotechnol., 2014, 9(5), 353—357 |
32 | Liu Z. Y., Dong J. Y., Pan J. H., Zhou C., Fan C. H., Wang Q, Chem. Res. Chinese Universities, 2021, 37(4), 914—918 |
33 | Acuna G. P., Möller F. M., Holzmeister P., Beater S., Lalkens B., Tinnefeld P., Science, 2012, 338(6106), 506—510 |
34 | Langecker M., Arnaut V., Martin T. G., List J., Renner S., Mayer M., Dietz H., Simmel F. C., Science, 2012, 338(6109), 932—936 |
35 | Linko V., Eerikäinen M., Kostiainen M. A., ChemComm, 2015, 51(25), 5351—5354 |
36 | Maeda H., Nakamura H., Fang J., Adv. Drug Deliv. Rev., 2013, 65(1), 71—79 |
37 | Wu N., Zhao Y. X., Chem. Res. Chinese Universities, 2020, 36(2), 177—184 |
38 | Ponnuswamy N., Bastings M. M. C., Nathwani B., Ryu J. H., Chou L. Y. T., Vinther M., Li W. A., Anastassacos F. M., Mooney D. J., Shih W. M., Nat. Commun., 2017, 8(1), 15654 |
39 | Zheng M., Yue C., Ma Y., Gong P., Zhao P., Zheng C., Sheng Z., Zhang P., Wang Z., Cai L., ACS Nano, 2013, 7(3), 2056—2067 |
40 | Du J. Z., Du X. J., Mao C. Q., Wang J., J. Am. Chem. Soc., 2011, 133(44), 17560—17563 |
41 | Xiao J., Weng J., Wen F., Ye J., ACS Omega, 2020, 5(51), 32861—32867 |
42 | Jiang Q., Song C., Nangreave J., Liu X., Lin L., Qiu D., Wang Z. G., Zou G., Liang X., Yan H., Ding B., J. Am. Chem. Soc., 2012, 134(32), 13396—13403 |
43 | Zhang Q., Jiang Q., Li N., Dai L., Liu Q., Song L., Wang J., Li Y., Tian J., Ding B., Du Y., ACS Nano, 2014, 8(7), 6633—6643 |
44 | Zhao Y. X., Shaw A., Zeng X., Benson E., Nyström A. M., Högberg B., ACS Nano, 2012, 6(10), 8684—8691 |
45 | Ge Z., Guo L., Wu G., Li J., Sun Y., Hou Y., Shi J., Song S., Wang L., Fan C., Lu H., Li Q., Small, 2020, 16(16), 1904857 |
46 | Wiraja C., Zhu Y., Lio D. C. S., Yeo D. C., Xie M., Fang W., Li Q., Zheng M., van Steensel M., Wang L., Fan C., Xu C., Nat. Commun., 2019, 10(1), 1147 |
47 | Halley P. D., Lucas C. R., McWilliams E. M., Webber M. J., Patton R. A., Kural C., Lucas D. M., Byrd J. C., Castro C. E., Small, 2016, 12(3), 308—320 |
48 | Shen X., Jiang Q., Wang J., Dai L., Zou G., Wang Z. G., Chen W. Q., Jiang W., Ding B., ChemComm, 2012, 48(92), 11301—11303 |
49 | Bastings M. M. C., Anastassacos F. M., Ponnuswamy N., Leifer F. G., Cuneo G., Lin C., Ingber D. E., Ryu J. H., Shih W. M., Nano Lett., 2018, 18(6), 3557—3564 |
50 | Jiang D., Ge Z., Im H. J., England C. G., Ni D., Hou J., Zhang L., Kutyreff C. J., Yan Y., Liu Y., Cho S. Y., Engle J. W., Shi J., Huang P., Fan C., Yan H., Cai W., Nat. Biomed. Eng., 2018, 2(11), 865—877 |
51 | Zheng Y. C., Zheng M. L., Li K., Chen S., Zhao Z. S., Wang X. S., Duan X. M., RSC Adv., 2015, 5(1), 770—774 |
52 | Zhuang X., Ma X., Xue X., Jiang Q., Song L., Dai L., Zhang C., Jin S., Yang K., Ding B., Wang P. C., Liang X. J., ACS Nano, 2016, 10(3), 3486—3495 |
53 | Zeng Y., Chang P., Ma J., Li K., Zhang C., Guo Y., Li H., Zhu Q., Liu H., Wang W., Chen Y., Chen D., Cao X., Zhan Y., ACS Appl. Mater. Interfaces, 2022, 14(5), 6387—6403 |
54 | Hemmi H., Takeuchi O., Kawai T., Kaisho T., Sato S., Sanjo H., Matsumoto M., Hoshino K., Wagner H., Takeda K., Akira S., Nature, 2000, 408(6813), 740—745 |
55 | Schüller V. J., Heidegger S., Sandholzer N., Nickels P. C., Suhartha N. A., Endres S., Bourquin C., Liedl T., ACS Nano, 2011, 5(12), 9696—9702 |
56 | Sellner S., Kocabey S., Nekolla K., Krombach F., Liedl T., Rehberg M., Biomaterials, 2015, 53, 453—463 |
57 | Liu S., Jiang Q., Zhao X., Zhao R., Wang Y., Wang Y., Liu J., Shang Y., Zhao S., Wu T., Zhang Y., Nie G., Ding B., Nat. Mater., 2021, 20(3), 421—430 |
58 | Gottesman M. M., Fojo T., Bates S. E., Nat. Rev. Cancer, 2002, 2(1), 48—58 |
59 | Kanasty R., Dorkin J. R., Vegas A., Anderson D., Nat. Mater., 2013, 12(11), 967—977 |
60 | Lee H., Lytton⁃Jean A. K. R., Chen Y., Love K. T., Park A. I., Karagiannis E. D., Sehgal A., Querbes W., Zurenko C. S., Jayaraman M., Peng C. G., Charisse K., Borodovsky A., Manoharan M., Donahoe J. S., Truelove J., Nahrendorf M., Langer R., Anderson D. G., Nat. Nanotechnol., 2012, 7(6), 389—393 |
61 | Rahman M. A., Wang P., Zhao Z., Wang D., Nannapaneni S., Zhang C., Chen Z., Griffith C. C., Hurwitz S. J., Chen Z. G., Ke Y., Shin D. M., Angew. Chem. Int. Ed., 2017, 56(50), 16023—16027 |
62 | Gottesman M. M., Fojo T., Bates S. E., Nat. Rev. Cancer, 2002, 2(1), 48—58 |
63 | Liu J., Song L., Liu S., Zhao S., Jiang Q., Ding B., Angew. Chem. Int. Ed., 2018, 57(47), 15486—15490 |
64 | Liu J., Song L., Liu S., Jiang Q., Liu Q., Li N., Wang Z. G., Ding B., Nano Lett., 2018, 18(6), 3328—3334 |
65 | Pan Q., Nie C., Hu Y., Yi J., Liu C., Zhang J., He M., He M., Chen T., Chu X., ACS Appl. Mater. Interfaces, 2020, 12(1), 400—409 |
66 | Tan W., Donovan M. J., Jiang J., Chem. Rev., 2013, 113(4), 2842—2862 |
67 | Chen Q., Ding F., Zhang S., Li Q., Liu X., Song H., Zuo X., Fan C., Mou S., Ge Z., Nano Lett., 2021, 21(10), 4394—4402 |
68 | Zhao S., Tian R., Wu J., Liu S., Wang Y., Wen M., Shang Y., Liu Q., Li Y., Guo Y., Wang Z., Wang T., Zhao Y., Zhao H., Cao H., Su Y., Sun J., Jiang Q., Ding B., Nat. Commun., 2021, 12(1), 358 |
69 | Chen X., Jia B., Lu Z., Liao L., Yu H., Li Z., ACS Appl. Mater. Interfaces, 2021, 13(33), 39711—39718 |
70 | Silvester E., Vollmer B., Pražák V., Vasishtan D., Machala E. A., Whittle C., Black S., Bath J., Turberfield A. J., Grünewald K., Baker L. A., Cell, 2021, 184(4), 1110—1121 |
71 | Yan M., Du J., Gu Z., Liang M., Hu Y., Zhang W., Priceman S., Wu L., Zhou Z. H., Liu Z., Segura T., Tang Y., Lu Y., Nat. Nanotechnol., 2010, 5(1), 48—53 |
72 | Knappe G. A., Wamhoff E. C., Read B. J., Irvine D. J., Bathe M., ACS Nano, 2021, 15(9), 14316—14322 |
73 | Pei H., Wan Y., Li J., Hu H., Su Y., Huang Q., Fan C., ChemComm, 2011, 47(22), 6254—6256 |
74 | Shaw A., Hoffecker I. T., Smyrlaki I., Rosa J., Grevys A., Bratlie D., Sandlie I., Michaelsen T. E., Andersen J. T., Högberg B., Nat. Nanotechnol., 2019, 14(2), 184—190 |
75 | Aghebat Rafat A., Sagredo S., Thalhammer M., Simmel F. C., Nat. Chem., 2020, 12(9), 852—859 |
76 | Veneziano R., Moyer T. J., Stone M. B., Wamhoff E. C., Read B. J., Mukherjee S., Shepherd T. R., Das J., Schief W. R., Irvine D. J., Bathe M., Nat. Nanotechnol., 2020, 15(8), 716—723 |
77 | Hellmeier J., Platzer R., Eklund A. S., Schlichthaerle T., Karner A., Motsch V., Schneider M. C., Kurz E., Bamieh V., Brameshuber M., Preiner J., Jungmann R., Stockinger H., Schütz G. J., Huppa J. B., Sevcsik E., Proc. Natl. Acad. Sci. USA, 2021, 118(4), e2016857118 |
78 | Dong R., Aksel T., Chan W., Germain R. N., Vale R. D., Douglas S. M., Proc. Natl. Acad. Sci. USA, 2021, 118(40), e2109057118 |
79 | Fang T., Alvelid J., Spratt J., Ambrosetti E., Testa I., Teixeira A. I., ACS Nano, 2021, 15(2), 3441—3452 |
80 | Wang Y., Baars I., Fördös F., Högberg B., ACS Nano, 2021, 15(6), 9614—9626 |
81 | Berger R. M. L., Weck J. M., Kempe S. M., Hill O., Liedl T., Rädler J. O., Monzel C., Heuer⁃Jungemann A., Small, 2021, 17(26), 2101678 |
82 | Schaffert D. H., Okholm A. H., Sørensen R. S., Nielsen J. S., Tørring T., Rosen C. B., Kodal A. L. B., Mortensen M. R., Gothelf K. V., Kjems J., Small, 2016, 12(19), 2634—2640 |
83 | Zhao S., Duan F., Liu S., Wu T., Shang Y., Tian R., Liu J., Wang Z. G., Jiang Q., Ding B., ACS Appl. Mater. Interfaces, 2019, 11(12), 11112—11118 |
84 | Li W., Wang C., Lv H., Wang Z., Zhao M., Liu S., Gou L., Zhou Y., Li J., Zhang J., Li L., Wang Y., Lou P., Wu L., Zhou L., Chen Y., Lu Y., Cheng J., Han Y. P., Cao Q., Huang W., Tong N., Fu X., Liu J., Zheng X., Berggren P. O., ACS Nano, 2021, 15(11), 18237—18249 |
85 | Sigl C., Willner E. M., Engelen W., Kretzmann J. A., Sachenbacher K., Liedl A., Kolbe F., Wilsch F., Aghvami S. A., Protzer U., Hagan M. F., Fraden S., Dietz H., Nat. Mater., 2021, 20(9), 1281—1289 |
86 | Mela I., Vallejo⁃Ramirez P. P., Makarchuk S., Christie G., Bailey D., Henderson R. M., Sugiyama H., Endo M., Kaminski C. F., Angew. Chem. Int. Ed., 2020, 59(31), 12698—12702 |
87 | Rosier B. J. H. M., Markvoort A. J., Gumí A. B., Roodhuizen J. A. L., den Hamer A., Brunsveld L., de Greef T. F. A., Nat. Catal., 2020, 3(3), 295—306 |
88 | Kahn J. S., Xiong Y., Huang J., Gang O., JACS Au, 2022, 2, 357—366 |
89 | Huang X., Neretina S., El⁃Sayed M. A., Adv. Mater., 2009, 21(48), 4880—4910 |
90 | Jiang Q., Shi Y., Zhang Q., Li N., Zhan P., Song L., Dai L., Tian J., Du Y., Cheng Z., Ding B., Small, 2015, 11(38), 5134—5141 |
91 | Du Y., Jiang Q., Beziere N., Song L., Zhang Q., Peng D., Chi C., Yang X., Guo H., Diot G., Ntziachristos V., Ding B., Tian J., Adv. Mater., 2016, 28(45), 10000—10007 |
92 | Song L., Jiang Q., Liu J., Li N., Liu Q., Dai L., Gao Y., Liu W., Liu D., Ding B., Nanoscale, 2017, 9(23), 7750—7754 |
93 | Xu T., Yu S., Sun Y., Wu S., Gao D., Wang M., Wang Z., Tian Y., Min Q., Zhu J. J., Small, 2021, 17(46), 2101780 |
94 | Wang P., Rahman M. A., Zhao Z., Weiss K., Zhang C., Chen Z., Hurwitz S. J., Chen Z. G., Shin D. M., Ke Y., J. Am. Chem. Soc., 2018, 140(7), 2478—2484 |
95 | Bui H., Onodera C., Kidwell C., Tan Y., Graugnard E., Kuang W., Lee J., Knowlton W. B., Yurke B., Hughes W. L., Nano Lett., 2010, 10(9), 3367—3372 |
96 | Green C. M., Hastman D. A., Mathur D., Susumu K., Oh E., Medintz I. L., Díaz S. A., ACS Nano, 2021, 15(5), 9101—9110 |
97 | Meyer T. A., Zhang C., Bao G., Ke Y., Nano Lett., 2020, 20(4), 2799—2805 |
98 | Andersen E. S., Dong M., Nielsen M. M., Jahn K., Subramani R., Mamdouh W., Golas M. M., Sander B., Stark H., Oliveira C. L. P., Pedersen J. S., Birkedal V., Besenbacher F., Gothelf K. V., Kjems J., Nature, 2009, 459(7243), 73—76 |
99 | Chen Y., Ke G., Ma Y., Zhu Z., Liu M., Liu Y., Yan H., Yang C. J., J. Am. Chem. Soc., 2018, 140(28), 8990—8996. |
100 | Douglas S. M., Bachelet I., Church G. M., Science, 2012, 335(6070), 831—834 |
101 | Li S., Jiang Q., Liu S., Zhang Y., Tian Y., Song C., Wang J., Zou Y., Anderson G. J., Han J. Y., Chang Y., Liu Y., Zhang C., Chen L., Zhou G., Nie G., Yan H., Ding B., Zhao Y., Nat. Biotechnol., 2018, 36(3), 258—264 |
102 | Ijäs H., Hakaste I., Shen B., Kostiainen M. A., Linko V., ACS Nano, 2019, 13(5), 5959—5967 |
103 | Wang Z., Song L., Liu Q., Tian R., Shang Y., Liu F., Liu S., Zhao S., Han Z., Sun J., Jiang Q., Ding B., Angew. Chem. Int. Ed., 2021, 60(5), 2594—2598 |
104 | Hahn J., Chou L. Y. T., Sørensen R. S., Guerra R. M., Shih W. M., ACS Nano, 2020, 14(2), 1550—1559 |
105 | Yang L., Zhao Y., Xu X., Xu K., Zhang M., Huang K., Kang H., Lin H. C., Yang Y., Han D., Angew. Chem. Int. Ed., 2020, 59(40), 17697—17704 |
106 | Engelen W., Sigl C., Kadletz K., Willner E. M., Dietz H., J. Am. Chem. Soc., 2021, 143(51), 21630—21636 |
107 | Agarwal N. P., Matthies M., Gür F. N., Osada K., Schmidt T. L., Angew. Chem. Int. Ed., 2017, 56(20), 5460—5464 |
108 | Wang S. T., Gray M. A., Xuan S., Lin Y., Byrnes J., Nguyen A. I., Todorova N., Stevens M. M., Bertozzi C. R., Zuckermann R. N., Gang O., Proc. Natl. Acad. Sci. USA, 2020, 117(12), 6339 |
109 | Surana S., Shenoy A. R., Krishnan Y., Nat. Nanotechnol., 2015, 10(9), 741—747 |
110 | Komal A., Noreen M., El⁃Kott A. F., Immunol. Res., 2021, 69(4), 312—322 |
111 | Praetorius F., Kick B., Behler K. L., Honemann M. N., Weuster⁃Botz D., Dietz H., Nature, 2017, 552(7683), 84—87 |
[1] | 王星火,汤钧,杨英威. 由聚合物门控的介孔二氧化硅基刺激响应性药物递送系统[J]. 高等学校化学学报, 2020, 41(1): 28. |
[2] | 王斌, 王晓红, 刘宗瑞, 段莉梅, 徐玲, 白锁柱. 多酸/邻菲罗啉钌LBL薄膜的制备及电化学调控荧光开关性能[J]. 高等学校化学学报, 2016, 37(5): 822. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||