高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (5): 1407.doi: 10.7503/cjcu20200870
符金洲1, 王汉伟2, 李莹莹2, 王超2, 李彩彩2, 孙庆丰2(), 李会巧1(
)
收稿日期:
2020-12-16
出版日期:
2021-05-10
发布日期:
2021-03-24
通讯作者:
孙庆丰,李会巧
E-mail:qfsun@zafu.edu.cn;hqli@hust.edu.cn
基金资助:
FU Jinzhou1, WANG Hanwei2, LI Yingying2, WANG Chao2, LI Caicai2, SUN Qingfeng2(), LI Huiqiao1(
)
Received:
2020-12-16
Online:
2021-05-10
Published:
2021-03-24
Contact:
SUN Qingfeng,LI Huiqiao
E-mail:qfsun@zafu.edu.cn;hqli@hust.edu.cn
Supported by:
摘要:
探寻绿色清洁的资源与材料以维持高效的社会经济增长是未来数十年人们面临的最大挑战之一. 可持续资源与绿色材料的开发是降低传统化石能源与材料比重的最有前途的方案. 纤维素作为一种可持续发展、 可生物再生、 储量丰富且低成本的天然高分子聚合物, 在众多领域中具有广泛的应用, 并且纤维素可以加工成各种构型, 包括气凝胶、 泡沫、 海绵和薄膜等. 本文介绍了不同形态的纤维素及其衍生物组装而成的功能膜在能源与环境中的应用, 综述了微纳米纤维素及其衍生物在先进功能化储能器件方面的最新进展和制备方案, 以及在用于水处理的膜分离技术中的应用, 其中重点讨论了微纳米纤维素及其衍生物功能膜在电池、 电容器及水处理等领域中的作用, 如隔膜、 柔性电极膜和分离膜等. 此外, 还对纤维素及其衍生物功能膜的未来发展进行了总结和展望.
中图分类号:
TrendMD:
符金洲, 王汉伟, 李莹莹, 王超, 李彩彩, 孙庆丰, 李会巧. 微纳米纤维素功能膜在能源与环境领域的应用. 高等学校化学学报, 2021, 42(5): 1407.
FU Jinzhou, WANG Hanwei, LI Yingying, WANG Chao, LI Caicai, SUN Qingfeng, LI Huiqiao. Micro/Nanocellulose Functional Membranes for Energy and Environment. Chem. J. Chinese Universities, 2021, 42(5): 1407.
Fig.4 Cellulose?based membranes(A) Design of cellulose micro/nanofiber membrane with its surface structure and mechanical properties[48]; Copyright 2019, Wiley. (B) Design of cellulose nanofiber membrane with its surface structure and thermodynamic properties[49]; Copyright 2019, National Academy of Sciences. (C) Design of nanocellulose membranes with their surface structures and their alkaline resistance[50]; Copyright 2019, Wiley. (D) Design of modified cellulose membrane with its surface structure and pore structure[51]; Copyright 2018, American Chemical Society.
Fig.5 Cellulose?based composite membranes(A) Cellulose/multi?dimensional functional materials composite membrane with its construction mechanism and improvement of mechanical properties[56]; Copyright 2017, Wiley. (B) Cellulose/functional polymer composite membranes with theirstructural character and improvement in ionic conductivity[57]; Copyright 2015, American Chemical Society. (C) Asymmetric cellulose composite membrane with its structure design and rectification characteristics for electrodes[59]; Copyright 2019, Elsevier.
Fig.6 Functional applications of cellulose?based membranes and composite membranes(A) Application in Li?S batteries[60]; Copyright 2018, Wiley. (B) Lithium/sodium metal batteries[62]; Copyright 2016, American Chemical Society. (C) High temperature Li?ion batteries[63]; Copyright 2018, Wiley. (D) All solid state batteries[56]; Copyright 2017, Wiley.
Fig.7 Cellulose?based composite electrode membranes(A) Micro/nanocellulose acted as binder for the design of flexible electrodes[64]; Copyright 2018, Wiley. (B) Fiber?liked electrode based on the self?deforming of the cellulose, in which active materials are coated within the cellulose fibers[68]; Copyright 2020, Royal Society of Chemistry.
Fig.8 Cellulose?based functional composite electrode membranes(A) Flexible foldable composite electrodes[69]; Copyright 2019, American Chemical Society. (B) Composite electrodes with enhanced conductivity[70]; Copyright 2019, Elsevier. (C) High?performance sulfur cathode in which sulfur NPs are coated within the cellulose fibers[72]; Copyright 2018, Elsevier.
Fig.9 Cellulose?based functionalized energy storage devices(A, B) Self?healing devices[73]; Copyright 2012, American Chemical Society. (C, D) Stretchable devices[74]; Copyright 2019, Wiley. (E, F) Electrode/diaphragm integrated devices[75]; Copyright 2017, Wiley. (G, H) Microdevices[76]; Copyright 2019, Wiley.
Fig.10 Conventional preparation methods, mechanisms and applications of cellulose?based membranes(A) Mechanisms and applications; (B) integration; (C) surface modification; (D) thin?film composite(TFC).
Fig.11 Fully cellulose?based membranes(A1, A2) TCNCS membrane[79]; Copyright 2016, Elsevier. (B1, B2) Ultrafine CNF membranes[81]; Copyright 2015, Wiley. (C1, C2) CNC/CNF/CNC multi?layered membranes[83]; Copyright 2016, Elsevier. (D1, D2) CA/LCNFs composite membranes[84]; Copyright 2020, Elsevier.
Fig.12 Integration of cellulose?based membranes and various dimensions materials(A, B) CA/TiO2 hybrid membranes[88]; Copyright 2011, Elsevier. (C, D) TCNC/PGS nanoporous membranes[89]; Copyright 2018, American Chemical Society. (E, F) TOCNF+GO biohybrid membrane[91]; Copyright 2017, American Chemical Society. (G, H) Pd/GO/BNC membrane[92]; Copyright 2018, Wiley. (I, J) SF?CNF membranes[93]; Copyright 2017, American Chemical Society. (K, L) F?PBZ/SiO2 NPs modified CA nanofibrous membranes[94]; Copyright 2012, Royal Society of Chemistry.
Fig.13 Surface modification of cellulose?based membranesGrafting: (A, B) BC membranes grafted with EDTA[95]; Copyright 2018, Elsevier. (C) Deacetylated CA membranes grafted with PMDA[97]; Copyright 2015, Royal Society of Chemistry. Coating: (D) cellulose/SiO2/MPTMS membranes(silica coating)[100]; Copyright 2017, Elsevier. (E) LDH/cellulose membranes(LDH coating)[101]; Copyright 2018, Elsevier. (F) CA membranes coated with Chitin nanocrystals[104]; Copyright 2016, Elsevier. Functionalization: (G, H) the functionalization of A4?sized printing paper[105]; Copyright 2020, American Chemical Society.
Fig.14 Thin?film composite(TFC) membranesActive layer: (A) cellulose nanosheet/CA membranes[109]; Copyright 2014, Royal Society of Chemistry. (B) PA/CNC/PES triple?layered TFC membranes[110]; Copyright 2017, Royal Society of Chemistry. (C) COF@CNFs/PAN membrane[111]; Copyright 2019, Springer Nature. Support layer: (D) CAP microporous substrates[113]; Copyright 2012, American Chemical Society.
Fig.15 Cellulose and its derivatives serve as additives(A, B) CNC/chitosan fully biobased menbranes[118]; Copyright 2014, Elsevier. (C, D) NCC?incorporated PVDF?HFP membranes[119]; Copyright 2013, Elsevier. (E, F) CAPh/PPSU hollow fiber membranes[121]; Copyright 2019, Elsevier. (G) CMC hydrogel?functiona? lized meshes[122]; Copyright 2019, American Chemical Society.
1 | Klemm D., Heublein B., Fink H. P., Bohn A., Angew. Chem. Int. Ed.,2005, 44(22), 3358—3393 |
2 | Chen C., Kuang Y., Zhu S., Burgert I., Keplinger T., Gong A., Li T., Berglund L., Eichhorn S. J., Hu L., Nat. Rev. Mater.,2020, 5(9), 642—666 |
3 | Pei J. C., Ping Q. W., Tang A. M., Li X. P., Lignocellulosic Chemistry, China Light Industry Press, Beijing, 2012, 162—254(裴继诚, 平清伟, 唐爱民, 李新平. 植物纤维化学, 北京: 中国轻工业出版社, 2012, 162—254) |
4 | Somerville C., Bauer S., Brininstool G., Facette M., Hamann T., Milne J., Osborne E., Paredez A., Persson S., Raab T., Vorwerk S., Youngs H., Science,2004, 306(5705), 2206 |
5 | Abe K., Yano H., Cellulose,2009, 16(6), 1017—1023 |
6 | Chen W. S., Yu H. P., Lee S. Y., Wei T., Li J., Fan Z. J., Chem. Soc. Rev.,2018, 47(8), 2837—2872 |
7 | Heinze T., Liebert T., Prog. Polym. Sci.,2001, 26(9), 1689—1762 |
8 | Kontturi E., Laaksonen P., Linder M. B., Nonappa, Groschel A. H., Rojas O. J., Ikkala O., Adv. Mater.,2018, 30(24), 1703779 |
9 | Klemm D., Cranston E. D., Fischer D., Gama M., Kedzior S. A., Kralisch D., Kramer F., Kondo T., Lindström T., Nietzsche S., Petzold⁃Welcke K., Rauchfuß F., Mater. Today,2018, 21(7), 720—748 |
10 | Berglund L. A., Burgert I., Adv. Mater.,2018, 30(19), 1704285 |
11 | Siro I., Plackett D., Cellulose,2010, 17(3), 459—494 |
12 | Klemm D., Kramer F., Moritz S., Lindström T., Ankerfors M., Gray D., Dorris A., Angew. Chem. Int. Ed.,2011, 50(24), 5438— 5466 |
13 | Espinha A., Dore C., Matricardi C., Alonso M. I., Goñi A. R., Mihi A., Nat. Photonics,2018, 12(6), 343—348 |
14 | Gladman A. S., Matsumoto E. A., Nuzzo R. G., Mahadevan L., Lewis J. A., Nat. Mater.,2016, 15(4), 413—418 |
15 | Luo J., Zhang M., Yang B., Liu G., Tan J., Nie J., Song S., Carbohydr. Polym.,2019, 203, 110—118 |
16 | Lin N., Dufresne A., Eur. Polym. J.,2014, 59, 302—325 |
17 | Yue X. J., Zhang T., Yang D. Y., Qiu F. X., Wei G. Y., Zhou H., Nano Energy,2019, 63, 103808 |
18 | Portela R., Leal C. R., Almeida P. L., Sobral R. G., Microb. Biotechnol.,2019, 12(4), 586—610 |
19 | Rajala S., Siponkoski T., Sarlin E., Mettänen M., Vuoriluoto M., Pammo A., Juuti J., Rojas O. J., Franssila S., Tuukkanen S., ACS Appl. Mater. Interfaces,2016, 8(24), 15607—15614 |
20 | Kuang Y., Chen G., Ming S. Y., Wu Z. F., Fang Z. Q., Cellulose,2016, 23(3), 1979—1987 |
21 | Li T., Zhang X., Lacey S. D., Mi R., Zhao X., Jiang F., Song J., Liu Z., Chen G., Dai J., Yao Y., Das S., Yang R., Briber R. M., Hu L., Nat. Mater.,2019, 18(6), 608—613 |
22 | Luo W., Hayden J., Jang S. H., Wang Y. L., Zhang Y., Kuang Y. D., Wang Y. B., Zhou Y. B., Rubloff G. W., Lin C. F., Hu L. B., Adv. Energy Mater.,2018, 8(9), 1702615 |
23 | Zhang J., Fu J., Song X., Jiang G., Zarrin H., Xu P., Li K., Yu A., Chen Z., Adv. Energy Mater.,2016, 6(14), 1600476 |
24 | Carpenter A. W., de Lannoy C. F., Wiesner M. R., Environ. Sci. Technol.,2015, 49(9), 5277—5287 |
25 | Hokkanen S., Bhatnagar A., Sillanpää M., Water Res.,2016, 91, 156—173 |
26 | Ling S., Kaplan D. L., Buehler M. J., Nat. Rev. Mater.,2018, 3(4), 18016 |
27 | Kelly J. A., Giese M., Shopsowitz K. E., Hamad W. Y., MacLachlan M. J., Acc. Chem. Res.,2014, 47(4), 1088—1096 |
28 | Olsson R. T., Azizi Samir M. A. S., Salazar⁃Alvarez G., Belova L., Ström V., Berglund L. A., Ikkala O., Nogués J., Gedde U. W., Nat. Nanotechnol.,2010, 5(8), 584—588 |
29 | Hu W. L., Chen S. Y., Yang J. X., Li Z., Wang H. P., Carbohydr. Polym.,2014, 101, 1043—1060 |
30 | Abe K., Iwamoto S., Yano H., Biomacromolecules,2007, 8(10), 3276—3278 |
31 | Wågberg L., Decher G., Norgren M., Lindström T., Ankerfors M., Axnäs K., Langmuir,2008, 24(3), 784—795 |
32 | Habibi Y., Chem. Soc. Rev.,2014, 43(5), 1519—1542 |
33 | Habibi Y., Lucia L. A., Rojas O. J., Chem. Rev.,2010, 110(6), 3479—3500 |
34 | Blanco Parte F. G., Santoso S. P., Chou C. C., Verma V., Wang H. T., Ismadji S., Cheng K. C., Crit. Rev. Biotechnol.,2020, 40(3), 397—414 |
35 | El⁃Saied H., Basta A. H., Gobran R. H., Polym. Plast. Technol.,2004, 43(3), 797—820 |
36 | Torres F. G., Commeaux S., Troncoso O. P., J. Funct. Biomater.,2012, 3(4), 864—78 |
37 | Ma L. N., Bi Z. J., Xue Y., Zhang W., Huang Q. Y., Zhang L. X., Huang Y. D., J. Mater. Chem. A,2020, 8(12), 5812—5842 |
38 | Cheng H., Li L. J., Wang B. J., Feng X. L., Mao Z. P., Vancso G. J., Sui X. F., Prog. Polym. Sci.,2020, 106, 101253 |
39 | Korhonen J. T., Kettunen M., Ras R. H. A., Ikkala O., ACS Appl. Mater. Interfaces,2011, 3(6), 1813—1816 |
40 | Fang Z. Q., Hou G. Y., Chen C. J., Hu L. B., Curr. Opin. Solid St. M.,2019, 23(4), 100764 |
41 | Toivonen M. S., Onelli O. D., Jacucci G., Lovikka V., Rojas O. J., Ikkala O., Vignolini S., Adv. Mater.,2018, 30(16), 1704050 |
42 | Han J., Zhou C., Wu Y., Liu F., Wu Q., Biomacromolecules,2013, 14(5), 1529—1540 |
43 | Larcher D., Tarascon J. M., Nat. Chem.,2015, 7(1), 19—29 |
44 | Armstrong R. C., Wolfram C., de Jong K. P., Gross R., Lewis N. S., Boardman B., Ragauskas A. J., Ehrhardt⁃Martinez K., Crabtree G., Ramana M. V., Nat. Energy,2016, 1(1), 15020 |
45 | Arico A. S., Bruce P., Scrosati B., Tarascon J. M., van Schalkwijk W., Nat. Mater.,2005, 4(5), 366—377 |
46 | Jin C., Nai J., Sheng O., Yuan H., Zhang W., Tao X., Lou D., Energy Environ. Sci.,2021, https://doi.org/10.1039/D0EE02848G |
47 | Yuan H., Liu T., Liu Y., Nai J., Wang Y., Zhang W., Tao X., Chem. Sci.,2019, 10(32), 7484—7495 |
48 | Xie W. G., Liu W. Y., Dang Y. P., Peng Y. J., Polym. Int.,2019, 68(7), 1341—1350 |
49 | Gwon H., Park K., Chung S. C., Kim R. H., Kang J. K., Ji S. M., Kim N. J., Lee S., Ku J. H., Do E. C., Park S., Kim M., Shim W. Y., Rhee H. S., Kim J. Y., Kim J., Kim T. Y., Yamaguchi Y., Iwamuro R., Saito S., Kim G., Jung I. S., Park H., Lee C., Lee S., Jeon W. S., Jang W. D., Kim H. U., Lee S. Y., Im D., Doo S. G., Lee S. Y., Lee H. C., Park J. H., Proc. Natl. Acad. Sci. USA,2019, 116(39), 19288—19293 |
50 | Zhao D. W., Chen C. J., Zhang Q., Chen W. S., Liu S. X., Wang Q. W., Liu Y. X., Li J., Yu H. P., Adv. Energy Mater.,2017, 7(18), 1700739 |
51 | Kim H., Guccini V., Lu H. R., Salazar⁃Alvarez G., Lindbergh G., Cornell A., ACS Appl. Energy Mater.,2019, 2(2), 1241—1250 |
52 | Lin C. E., Zhang H., Song Y. Z., Zhang Y., Yuan J. J., Zhu B. K., J. Mater. Chem. A,2018, 6(3), 991—998 |
53 | Zahn R., Lagadec M. F., Hess M., Wood V., ACS Appl. Mater. Interfaces,2016, 8(48), 32637—32642 |
54 | Xu Q., Wei C. Z., Fan L. L., Peng S., Xu W. L., Xu J., Cellulose,2017, 24(4), 1889—1899 |
55 | Polino G., Scaramella A., Manca V., Palmieri E., Tamburri E., Orlanducci S., Brunetti F., Energy Technol.,2020, 8(6), 1901233 |
56 | Li H., Wu D., Wu J., Dong L. Y., Zhu Y. J., Hu X., Adv. Mater.,2017, 29(44), 1703548 |
57 | Huang F. L., Xu Y. F., Peng B., Su Y. F., Jiang F., Hsieh Y. L., Wei Q. F., ACS Sustain. Chem. Eng.,2015, 3(5), 932—940 |
58 | Dong T. T., Zhang J. J., Xu G. J., Chai J. C., Du H. P., Wang L. L., Wen H. J., Zang X., Du A. B., Jia Q. M., Zhou X. H., Cui G. L., Energy Environ. Sci.,2018, 11(5), 1197—1203 |
59 | Pan R. J., Sun R., Wang Z. H., Lindh J., Edstrom K., Stromme M., Nyholm L., Energy Storage Mater.,2019, 21, 464—473 |
60 | Qu H., Zhang J., Du A., Chen B., Chai J., Xue N., Wang L., Qiao L., Wang C., Zang X., Yang J., Wang X., Cui G., Adv. Sci.,2018, 5(3), 1700503 |
61 | Zhang S. S., Inorg. Chem. Front.,2015, 2(12), 1059—1069 |
62 | Yu B. C., Park K., Jang J. H., Goodenough J. B., ACS Energy Lett.,2016, 1(3), 633—637 |
63 | Xie H., Yang C., Fu K. K., Yao Y., Jiang F., Hitz E., Liu B., Wang S., Hu L., Adv. Energy Mater.,2018, 8(18), 1703474 |
64 | Kuang Y. D., Chen C. J., Pastel G., Li Y. J., Song J. W., Mi R. Y., Kong W. Q., Liu B. Y., Jiang Y. Q., Yang K., Hu L. B., Adv. Energy Mater.,2018, 8(33), 1802398 |
65 | Liu N., Lu Z., Zhao J., McDowell M. T., Lee H. W., Zhao W., Cui Y., Nat. Nanotechnol.,2014, 9(3), 187—192 |
66 | Li S. H., Huang D. K., Zhang B. Y., Xu X. B., Wang M. K., Yang G., Shen Y., Adv. Energy Mater.,2014, 4(10), 1301655 |
67 | Li M., Du H., Kuai L., Huang K., Xia Y., Geng B., Angew. Chem. Int. Ed.,2017, 56(41), 12649—12653 |
68 | Wang H. W., Fu J. Z., Wang C., Wang J. Y., Yang A. K., Li C. C., Sun Q. F., Cui Y., Li H. Q., Energy Environ. Sci.,2020, 13(3), 848—858 |
69 | Zhou S., Kong X., Zheng B., Huo F., Strømme M., Xu C., ACS Nano,2019, 13(8), 9578—9586 |
70 | Hou M. J., Xu M. J., Hu Y. M., Li B., Electrochim. Acta,2019, 313, 245—254 |
71 | Lu H. R., Hagberg J., Lindbergh G., Cornell A., Nano Energy,2017, 39, 140—150 |
72 | Li L., Hou L., Cheng J., Simmons T., Zhang F., Zhang L. T., Linhardt R. J., Koratkar N., Energy Storage Mater.,2018, 15, 388—395 |
73 | Kang Y. J., Chun S. J., Lee S. S., Kim B. Y., Kim J. H., Chung H., Lee S. Y., Kim W., ACS Nano,2012, 6(7), 6400—6406 |
74 | Jiao S., Zhou A., Wu M., Hu H., Adv. Sci.,2019, 6(12), 1900529 |
75 | Lv Z., Luo Y., Tang Y., Wei J., Zhu Z., Zhou X., Li W., Zeng Y., Zhang W., Zhang Y., Qi D., Pan S., Loh X. J., Chen X., Adv. Mater.,2018, 30(2), 1704531 |
76 | Kim J. W., Park H., Lee G., Jeong Y. R., Hong S. Y., Keum K., Yoon J., Kim M. S., Ha J. S., Adv. Funct. Mater.,2019, 29(50), 1905968 |
77 | Thakur V. K., Voicu S. I., Carbohydr. Polym.,2016, 146, 148—165 |
78 | Voisin H., Bergström L., Liu P., P Mathew A., Nanomaterials,2017, 7, 57 |
79 | Cheng Q. Y., Ye D. D., Chang C. Y., Zhang L. N., J. Membr. Sci.,2017, 525, 1—8 |
80 | Wang G., He Y., Wang H., Zhang L. Y., Yu Q. Y., Peng S. S., Wu X. D., Ren T. H., Zeng Z. X., Xue Q. J., Green Chem.,2015, 17(5), 3093—3099 |
81 | Zhang Q. G., Deng C., Soyekwo F., Liu Q. L., Zhu A. M., Adv. Funct. Mater.,2016, 26(5), 792—800 |
82 | Hou D. X., Li T., Chen X., He S. M., Dai J. Q., Mofid S. A., Hou D. Y., Iddya A., Jassby D., Yang R. G., Hu L. B., Ren Z. J., Sci. Adv.,2019, 5(8), eaaw3203 |
83 | Karim Z., Claudpierre S., Grahn M., Oksman K., Mathew A. P., J. Membr. Sci.,2016, 514, 418—428 |
84 | Yang S. J., Wang T. H., Tang R., Yan Q. L., Tian W. Q., Zhang L. P., Int. J. Biol. Macromol.,2020, 151, 159—167 |
85 | Rohrbach K., Li Y. Y., Zhu H. L., Liu Z., Dai J. Q., Andreasen J. L., Hu L. B., Chem. Commun.,2014, 50(87), 13296—13299 |
86 | Li N., Zheng J., Hadi P., Yang M., Huang X., Ma H., Walker H. W., Hsiao B. S., Membranes,2019, 9(6), 70 |
87 | Shimizu M., Álvarez⁃Asencio R., Nordgren N., Uedono A., Cellulose,2019, 27(3), 1357—1365 |
88 | Abedini R., Mousavi S. M., Aminzadeh R., Desalination,2011, 277(1—3), 40—45 |
89 | Zhan H., Zuo T., Tao R. J., Chang C. Y., ACS Sustain. Chem. Eng.,2018, 6(8), 10833—10840 |
90 | Isogai A., Saito T., Fukuzumi H., Nanoscale,2011, 3(1), 71—85 |
91 | Zhu C. T., Liu P., Mathew A. P., ACS Appl. Mater. Interfaces,2017, 9(24), 21048—21058 |
92 | Xu T., Jiang Q. S., Ghim D., Liu K. K., Sun H. C., Derami H. G., Wang Z. Y., Tadepalli S., Jun Y. S., Zhang Q. H., Singamaneni S., Small,2018, 14(15), 1704006 |
93 | Xiong R., Kim H. S., Zhang S. D., Kim S., Korolovych V. F., Ma R. L., Yingling Y. G., Lu C. H., Tsukruk V. V., ACS Nano,2017, 11(12), 12008—12019 |
94 | Shang Y., Si Y., Raza A., Yang L., Mao X., Ding B., Yu J., Nanoscale,2012, 4(24), 7847 |
95 | Cheng R., Kang M., Zhuang S. T., Shi L., Zheng X., Wang J. L., J. Hazard. Mater.,2019, 364, 645—653 |
96 | d'Halluin M., Ru⁃Barrull J., Bretel G., Labrugere C., Le Grognec E., Felpin F. X., ACS Sustain. Chem. Eng.,2017, 5(2), 1965—1973 |
97 | Li Y., Wen Y. A., Wang L. H., He J. X., Al-Deyab S. S., El-Newehy M., Yu J. Y., Ding B., J. Mater. Chem. A,2015, 3(35), 18180—18189 |
98 | Chitpong N., Husson S. M., J. Membr. Sci.,2017, 523, 418—429 |
99 | Wu H., Wu L. H., Lu S. C., Lin X. X., Xiao H., Ouyang X. H., Cao S. L., Chen L. H., Huang L. L., Carbohydr. Polym.,2018, 181, 419—425 |
100 | Lukojko E., Talik E., Gagor A., Sitko R., Anal. Chim. Acta,2018, 1008, 57—65 |
101 | Yue X. J., Zhang T., Yang D. Y., Qiu F. X., Li Z. D., Zhu Y., Yu H. Q., J. Clean. Prod.,2018, 180, 307—315 |
102 | Zha X. J., Zhao X., Pu J. H., Tang L. S., Ke K., Bao R. Y., Bai L., Liu Z. Y., Yang M. B., Yang W., ACS Appl. Mater. Interfaces,2019, 11(40), 36589—36597 |
103 | Wang J. Q., Lu X. K., Ng P. F., Lee K. I., Fei B., Xin J. H., Wu J. Y., J. Colloid Interface Sci.,2015, 440, 32—38 |
104 | Goetz L. A., Jalvo B., Rosal R., Mathew A. P., J. Membr. Sci.,2016, 510, 238—248 |
105 | Ahn E., Kim T., Jeon Y., Kim B. S., ACS Nano,2020, 14(5), 6173—6180 |
106 | Arslan O., Aytac Z., Uyar T., ACS Appl. Mater. Interfaces,2016, 8(30), 19747—19754 |
107 | Choi H. Y., Bae J. H., Hasegawa Y., An S., Kim I. S., Lee H., Kim M., Carbohydr. Polym.,2020, 234, 115881 |
108 | Lu X. L., Feng X. D., Yang Y., Jiang J., Cheng W., Liu C. H., Gopinadhan M., Osuji C. O., Ma J., Elimelech M., Nat. Commun.,2019, 10(1), 2347 |
109 | Zhou K., Zhang Q. G., Li H. M., Guo N. N., Zhu A. M., Liu Q. L., Nanoscale,2014, 6(17), 10363—10369 |
110 | Wang J. J., Yang H. C., Wu M. B., Zhang X., Xu Z. K., J. Mater. Chem. A,2017, 5(31), 16289—16295 |
111 | Yang H., Yang L. X., Wang H. J., Xu Z., Zhao Y. M., Luo Y., Nasir N., Song Y. M., Wu H., Pan F. S., Jiang Z. Y., Nat. Commun.,2019, 10(1), 2101 |
112 | Bai L. M., Liu Y. T., Ding A., Ren N. Q., Li G. B., Liang H., Chem. Eng. J.,2019, 358, 1519—1528 |
113 | Li X., Wang K. Y., Helmer B., Chung T. S., Ind. Eng. Chem. Res.,2012, 51(30), 10039—10050 |
114 | Cruz⁃Tato P., Ortiz⁃Quiles E. O., Vega⁃Figueroa K., Santiago⁃Martoral L., Flynn M., Diaz⁃Vazquez L. M., Nicolau E., Environ. Sci. Technol.,2017, 51(8), 4585—4595 |
115 | Kong J. F., Zhu Y. C., Jin J., Chem. J. Chinese Universities, 2020, 41(4), 690—696 (孔金凤, 朱玉长, 靳健. 高等学校化学学报, 2020, 41(4), 690—696) |
116 | Wang X., Yeh T. M., Wang Z., Yang R., Wang R., Ma H. Y., Hsiao B. S., Chu B., Polymer,2014, 55(6), 1358—1366 |
117 | Xiong R., Kim H. S., Zhang L., Korolovych V. F., Zhang S., Yingling Y. G., Tsukruk V. V., Angew. Chem. Int. Ed.,2018, 57(28), 8508—8513 |
118 | Karim Z., Mathew A. P., Grahn M., Mouzon J., Oksman K., Carbohydr. Polym.,2014, 112, 668—676 |
119 | Lalia B. S., Guillen E., Arafat H. A., Hashaikeh R., Desalination,2014, 332(1), 134—141 |
120 | Gopakumar D. A., Pasquini D., Henrique M. A., de Morais L. C., Grohens Y., Thomas S., ACS Sustain. Chem. Eng.,2017, 5(2), 2026—2033 |
121 | Kumar M., RaoT S., Isloor A. M., Ibrahim G. P. S., Inamuddin, Ismail N., Ismail A. F., Asiri A. M., Int. J. Biol. Macromol.,2019, 129, 715—727 |
122 | Xiong Y., Xu L., Nie K., Jin C., Sun Q., Xu X., Langmuir,2019, 35(34), 11071—11079 |
123 | Mahfoudhi N., Boufi S., Cellulose,2017, 24(3), 1171—1197 |
124 | Olivera S., Muralidhara H. B., Venkatesh K., Guna V. K., Gopalakrishna K., Kumar K. Y., Carbohydr. Polym.,2016, 153, 600— 618 |
125 | Jiang Q., Tian L., Liu K. K., Tadepalli S., Raliya R., Biswas P., Naik R. R., Singamaneni S., Adv. Mater.,2016, 28(42), 9400—9407 |
126 | Song J., Chen C., Zhu S., Zhu M., Dai J., Ray U., Li Y., Kuang Y., Li Y., Quispe N., Yao Y., Gong A., Leiste U. H., Bruck H. A., Zhu J. Y., Vellore A., Li H., Minus M. L., Jia Z., Martini A., Li T., Hu L., Nature,2018, 554(7691), 224—228 |
127 | Chen F. J., Gong A. S., Zhu M. W., Chen G., Lacey S. D., Jiang F., Li Y. F., Wang Y. B., Dai J. Q., Yao Y. G., Song J. W., Liu B. Y., Fu K., Das S., Hu L. B., ACS Nano,2017, 11(4), 4275—4282 |
128 | Jia C., Li Y. J., Yang Z., Chen G., Yao Y. G., Jiang F., Kuang Y. D., Pastel G., Xie H., Yang B., Das S., Hu L. B., Joule,2017, 1(3), 588—599 |
129 | Li T., Liu H., Zhao X. P., Chen G., Dai J. Q., Pastel G., Jia C., Chen C. J., Hitz E., Siddhartha D., Yang R. G., Hu L. B., Adv. Funct. Mater.,2018, 28(16), 1707134 |
130 | Kuang Y. D., Chen C. J., He S. M., Hitz E. M., Wang Y. L., Gan W. T., Mi R. Y., Hu L. B., Adv. Mater.,2019, 31(23), 1900498 |
131 | Zhu H., Luo W., Ciesielski P. N., Fang Z., Zhu J. Y., Henriksson G., Himmel M. E., Hu L., Chem. Rev.,2016, 116(16), 9305—9374 |
132 | Lagadec M. F., Zahn R., Wood V., Nat. Energy,2019, 4(1), 16—25 |
133 | Eder M., Amini S., Fratzl P., Science,2018, 362(6414), 543—547 |
[1] | 唐全骏, 刘颖馨, 孟蓉炜, 张若天, 凌国维, 张辰. 单原子催化在海洋能源领域的应用[J]. 高等学校化学学报, 2022, 43(9): 20220324. |
[2] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[3] | 郭程, 张威, 唐云. 有序介孔材料: 历史、 现状与发展趋势[J]. 高等学校化学学报, 2022, 43(8): 20220167. |
[4] | 李琳, 齐丰莲, 邱丽莉, 孟子晖. 基于六边形磁纳米片构建动态非晶态光学结构图案[J]. 高等学校化学学报, 2022, 43(8): 20220123. |
[5] | 王瑞娜, 孙瑞粉, 钟添华, 池毓务. 大尺寸石墨烯量子点组装体的制备及电化学发光性能[J]. 高等学校化学学报, 2022, 43(8): 20220161. |
[6] | 仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220179. |
[7] | 夏雾, 任颖异, 刘京, 王锋. 壳聚糖包裹CdSe量子点组装体的水相可见光催化CO2还原[J]. 高等学校化学学报, 2022, 43(7): 20220192. |
[8] | 邱丽琪, 姚向阳, 何良年. 可见光驱动丰产金属卟啉类配合物催化的二氧化碳选择性还原反应[J]. 高等学校化学学报, 2022, 43(7): 20220064. |
[9] | 吴俊, 何观朝, 费慧龙. 自支撑单原子膜电极在能源电催化中的应用[J]. 高等学校化学学报, 2022, 43(5): 20220051. |
[10] | 俞彬, 谌小燕, 赵越, 陈卫昌, 肖新颜, 刘海洋. 氧化石墨烯基钴卟啉复合材料的电催化析氢反应[J]. 高等学校化学学报, 2022, 43(2): 20210549. |
[11] | 李波, 孟禹汐, 王雯雯, 臧宏瑛. 多核多氧硫钼酸盐化合物的合成及质子传导性能[J]. 高等学校化学学报, 2022, 43(1): 20210657. |
[12] | 杜顺福, 王文经, EL-SAYED El-Sayed M., 苏孔钊, 袁大强, 洪茂椿. 一种具有化学发光性能的锆基金属有机四面体[J]. 高等学校化学学报, 2022, 43(1): 20210628. |
[13] | 李奕川, 朱国富, 王宇, 柴永明, 刘晨光, 何盛宝. 基底表面性质与前驱液化学环境对原位定向构筑钛硅分子筛膜的影响[J]. 高等学校化学学报, 2021, 42(9): 2934. |
[14] | 魏敏敏, 袁泽, 闾敏, 马辉, 谢小吉, 黄岭. 稀土掺杂上转换纳米颗粒-金属有机骨架复合材料的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2313. |
[15] | 薛谨, 曹小卫, 刘依帆, 王敏. 纸质空心金纳米笼SERS传感器的制备及对非小细胞肺癌患者痰液中miRNAs的快速高灵敏检测[J]. 高等学校化学学报, 2021, 42(8): 2393. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||