高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (6): 1163.doi: 10.7503/cjcu20190667
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
收稿日期:
2019-12-14
出版日期:
2020-06-10
发布日期:
2020-04-09
通讯作者:
侯春喜,刘俊秋
E-mail:chunxihou@jlu.edu.cn;junqiuliu@jlu.edu.cn
基金资助:
HOU Chunxi*(),LI Yijia,WANG Tingting,LIU Shengda,YAN Tengfei,LIU Junqiu*(
)
Received:
2019-12-14
Online:
2020-06-10
Published:
2020-04-09
Contact:
Chunxi HOU,Junqiu LIU
E-mail:chunxihou@jlu.edu.cn;junqiuliu@jlu.edu.cn
Supported by:
摘要:
系统总结了弹性肽(ELPs)的自组装及其组装体的生物应用研究现状, 讨论了ELPs的温控相变在构建超分子组装体方面的独特优势, 探讨了ELPs纳米结构的序列敏感性, 展望了ELPs在超分子组装中的实际应用.
中图分类号:
TrendMD:
侯春喜, 李逸佳, 王婷婷, 刘盛达, 闫腾飞, 刘俊秋. 弹性肽在超分子组装中的应用. 高等学校化学学报, 2020, 41(6): 1163.
HOU Chunxi, LI Yijia, WANG Tingting, LIU Shengda, YAN Tengfei, LIU Junqiu. Application of Elastin-like Polypeptides in Supramolecular Assembly . Chem. J. Chinese Universities, 2020, 41(6): 1163.
Fig.1 Amino acid sequences of GPG1, GPG2 and GPG3(A), schematic structure of the beaded nanofibers(B) and AFM images of the assembled of GPG1(C1), GPG2(C2), GPG3(C3) and high magnification image(C4) of GPG3 nanofibers[15] Copyright 2017, Wiley-VCH.
Fig.2 Complete amino acid sequence of elastin diblock polypeptides(A, B), variable-temperature 1H NMR spectra(C) and AFM image of amphiphilic micelle fomation(D)[24] Copyright 2010, Wiley-VCH.
Fig.3 Synthetic pathway of elastin-mimetic dendrimers with two repeats of peptide(A), DSC analysis of elastin-mimetic dendrimers, normalized to dendrimer molar(B) and peptide unit mole(C)[25] Copyright 2013, Wiley-VCH.
Fig.4 TEM images(A—F) of genetically encoded asymmetric amphiphiles and highly asymmetric polypeptide amphiphiles into cylindrical micelles(G)[26] (A) A160-(YGG)8; (B) A160-(YG)8; (C) A160-Y8; (D) A160-(FGG)8; (E) A80-(FGG)8; (F) A40-(FGG)8.Copyright 2014, Wiley-VCH.
Fig.5 Formation of adhesive hydrogels enabled by enzymatically oxidized peptide motifs originated from Mfp’s(A) and frequency sweep tests on oxidized product(B)[27] Copyright 2019, Royal Society of Chemistry.
Fig.6 ELPs induced protein assembly into vesicle(A), theoretical model of molecular packing(B) and confocal micrographs of vesicles including mCherry-ZE and ZR-ELP(C1), EGFP-ZEand ZR-ELP(C2), mCherry-ZE, EGFP-ZE and ZR-ELP(C3)[32] Insets of (C1) and(C2): close-up images. Insets of(C3): close-up image and fluorescence intensity profile corresponding to the inset image.Copyright 2014, American Chemical Society.
Fig.7 Proposed interaction between azobenzene pendant group and α-CD(A)[37], photochemical reaction of spiropyran derivative(B), temperature profiles under distinctive illuminations(C) and photomodulation of phase separation by UV-sunlight(D1) or by darkness-sunlight(D2)[38] (A) Copyright 2002, Wiley-VCH; (B)—(D) Copyright 2000, American Chemical Society.
Fig.8 Characterization of phase transition for ELP90A,120 with and without NMT(A), a bicistronic vector used to coexpress two genes(B), fatty-acid-modified elastin-like peptides(C)[42] and TEM images of of M-B1-ELP(D1), M-B2-ELP(D2) and M-B3-ELP(D3) above Tt[39] Insets of (D2) and (D3): higher-magnification images from the super-resolution mode of the microscope.(A) Copyright 2018, Macmillan Publishers Limited; (B—D) Copyright 2017, Wiley-VCH.
Fig.9 Chemical conjugation of ELPs and CLP(A)[48] and TEM images of various ELPs-CLP conjugates(B) and theoretical model(C)[49] Copyright 2004, Elsevier.
[1] |
Glassman M. J., Olsen B. D., Biomacromolecules, 2015, 16, 3762—3773
doi: 10.1021/acs.biomac.5b01026 URL |
[2] |
Deng L., Mohan T., Chang T. Z., Gonzalez G. X., Wang Y., Kwon Y. M., Hang S. M., Compans R. W., Champion J. A., Wang B. Z., Nat. Comm., 2018, 9, 359
doi: 10.1038/s41467-017-02725-4 URL |
[3] |
Woodhouse K. A., Klement P., Chen V., Gorbet M. B., Keeley F. W., Stahl R., Biomaterials, 2004, 25(19), 4543—53
doi: 10.1016/j.biomaterials.2003.11.043 URL |
[4] |
Wu H. C., LeValley P. J., Luo T. Z., Kloxin A. M., Kiick K. L., Bioconjugate Chem., 2018, 29(11), 3595—3605
doi: 10.1021/acs.bioconjchem.8b00546 URL |
[5] |
Blit P. H., McClung W. G., Brash J. L, Woodhouse K. A., Santerre J. P., Biomaterials, 2011, 32(25), 5790—800
doi: 10.1016/j.biomaterials.2011.04.067 URL |
[6] |
Junger A., Kaufmann D., Scheibel T., Weberskirch R., Macromol. Biosci., 2005, 5(6), 494—501
doi: 10.1002/(ISSN)1616-5195 URL |
[7] |
MacKay J. A., Callahan D. J., FitzGerald K. N., Chilkoti A., Biomacromolecules, 2010, 11(11), 2873—2879
doi: 10.1021/bm100571j URL |
[8] |
Waterhouse A., Yin Y., Wise S. G., Bax D. V., McKenzie D. R., Bilek M. M., Biomaterials, 2010, 31(32), 8332—8340
doi: 10.1016/j.biomaterials.2010.07.062 URL |
[9] |
Srokowski E. M., Blit P. H., McClung W. G., Brash J. L., Santerre J. P., Woodhouse K. A., J. Biomater. Sci. Polym. Ed., 2011, 22(1—3), 41—57
doi: 10.1163/092050609X12578498935594 URL |
[10] |
Le D. H. T., Sugawara-Narutaki A., Mol. Syst. Des. Eng., 2019, 4(3), 545—565
doi: 10.1039/C9ME00002J URL |
[11] |
Chen Y. L., Guan Z. B., J. Am. Chem. Soc., 2010, 132(13), 4577—4579
doi: 10.1021/ja9104446 URL |
[12] |
Liu D. Y., Daubendiek S. L., Zillman M. A., Ryan K., Kool E. T., J. Am. Chem. Soc., 1996, 118(7), 1587—1594
doi: 10.1021/ja952786k URL |
[13] |
He C. Z., Genchev G. Z., Lu H., Li H. B., J. Am. Chem. Soc., 2012, 134, 10428—10435
doi: 10.1021/ja3003205 URL |
[14] |
McDaniel J. R., MacKay J. A., Quiroz F. G., Chilkoti A., Biomacromolecules, 2010, 11(4), 944—949
doi: 10.1021/bm901387t URL |
[15] |
Le D. H. T., Tsutsui Y., Sugawara-Narutaki A., Yukawa H., Baba Y., Ohtsuki C., J. Biomed. Mater. Res. A, 2017, 105(9), 2475—2484
doi: 10.1002/jbm.v105.9 URL |
[16] |
Hou C. X., Li J. X., Zhao L. L., Zhang W., Luo Q., Dong Z. Y., Xu J. Y., Liu J. Q., Angew. Chem. Int. Ed., 2013, 52, 5590—5593
doi: 10.1002/anie.201300692 URL |
[17] |
Si C. Y., Li J. X., Luo Q., Hou C. X., Pan T. Z., Li H. B., Liu J. Q., Chem. Commun., 2016, 52, 2924—2927
doi: 10.1039/C5CC10373H URL |
[18] |
Vargas E. C., Stuart M. A. C., de Vries R., Hernandez-Garcia A., Chem. Eur. J., 2019, 25(47), 11058—11065
doi: 10.1002/chem.v25.47 URL |
[19] |
Callahan D. J., Liu W. E., Li X. H., Dreher M. R., Hassouneh W., Kim M., Marszalek P., Chilkoti A., Nano. Lett., 2012, 12(4), 2165—2170
doi: 10.1021/nl300630c URL |
[20] |
Herrero-Vanrell R., Rincon A. C., Alonso M., Reboto V., Molina-Martinez I. T., Rodriguez-Cabello J. C., J. Control. Release, 2005, 102(1), 113—122
doi: 10.1016/j.jconrel.2004.10.001 URL |
[21] |
Kaufmann D., Weberskirch R., Macromol. Biosci., 2006, 6(11), 952—958
doi: 10.1002/(ISSN)1616-5195 URL |
[22] |
Kim W., Haller C., Dai E., Wang X. W., Hagemeyer C. E., Liu D. R., Peter K., Chaikof E., Angew. Chem. Int. Ed., 2015, 54(5), 1461—1465
doi: 10.1002/anie.201408529 URL |
[23] |
Kracke B., Cole J. T., Kaiser C. J. O., Hellenkamp B., Krysiak S., Ghoorchian A., Braun G. B., Holland N. B., Hugel T., Macromolecules, 2015, 48(16), 5868—5877
doi: 10.1021/acs.macromol.5b00932 URL |
[24] |
Kim W., Thevenot J., Ibrboure E., Lecommandoux S., Chaikof E. L., Angew. Chem. Int. Ed., 2010, 49(25), 4257—4260
doi: 10.1002/anie.v49:25 URL |
[25] |
Kojima C., Irie K., Tada T., Tanaka N., Biopolymers, 2014, 101(6), 603—612
doi: 10.1002/bip.22425 URL |
[26] | McDaniel J. R., Weitzhandler I., Prevost S., Vargo K. B., Appavou M. S., Hammer D. A., Gradzielski M., Chilkoti A., Nano Lett., 2014, 14(11), 6590—6598 |
[27] | Park B. M., Luo J. R., Sun F., Polym. Chem., 2019, 10(7), 823—826 |
[28] |
Lee K. M., Kim J. H., Choi E. S., Kim E., Choi S. K., Jeon W. B., Acta Biomater., 2019, 94, 351—360
doi: 10.1016/j.actbio.2019.06.011 URL |
[29] |
Lau H. K., Paul A., Sidhu I., Li L., Sabanayagam C. R., Parekh S. H., Kiick K. L., Adv. Sci., 2018, 5(6), 1701010
doi: 10.1002/advs.v5.6 URL |
[30] | Tian Y., Zhang H. V., Kiick K. L., Saven J. G., Pochan D. J., Chem. Mater., 2018, 30(23), 8510—8520 |
[31] | Yuan Y., Koria P., J. Biomed. Mater. Res. Part A, 2016, 104(3), 697—706 |
[32] | Park W. M., Champion J. A., J. AM. Chem. Soc., 2014, 136, 17906—17909 |
[33] |
Jang Y., Choi W. T., Heller W. T., Ke Z. L., Wright E. R., Champion J. A., Small, 2017, 13(36), 1700399
doi: 10.1002/smll.v13.36 URL |
[34] |
Hassouneh W., Fischer K., MacEwan S. R., Branscheid R., Fu C. L., Liu R., Schmidt M., Chilkoti A., Biomacromolecules, 2012, 13(5), 1598—1605
doi: 10.1021/bm300321n URL |
[35] |
Mills C. E., Michaud Z., Olsen B. D., Biomacromolecules, 2018,19(7), 2517—2525
doi: 10.1021/acs.biomac.8b00147 URL |
[36] |
Wu J. C., Xu B., Liu Z. H., Yao Y., Zhuang Q. X., Lin S. L., Polym. Chem., 2019, 10, 4025—4030
doi: 10.1039/C9PY00634F URL |
[37] | Cabello J. C. R., Alonso M., Guiscardo L., Reboto V., GirottiA., Adv. Mater., 2002, 14, 1151—1154 |
[38] |
Alonso M., Reboto V., Guiscardo L., SanMartin A., Cabello J. C. R., Macromolecules, 2000, 33, 9480—9482
doi: 10.1021/ma001348h URL |
[39] |
Luginbuhl K. M., Mozhdehi D., Dzuricky M., Yousefpour P., Huang F. C., Mayne N. R., Buehne K. L., Chilkoti A., Angew. Chem. Int. Ed., 2017, 56(45), 13979—13984
doi: 10.1002/anie.201704625 URL |
[40] | Meins J. F. L., Schatz C., Lecommandoux S., Sandre O., Mater. Today, 2013, 16, 397—402 |
[41] |
Liu Z., Zhang Z., Zhou C., Jiao Y., Prog. Polym. Sci., 2010, 35, 1144—1162
doi: 10.1016/j.progpolymsci.2010.04.007 URL |
[42] | Mozhdehi D., Luginbuhl K. M., Simon J. R., Dzuricky M., Berger R., Varol H. S., Huang F. C., Buehne K. L., Mayne N. R., Weitzhandler I., Bonn M., Parekh S. H., Chilkoti A., Nat. Chem., 2018, 10(5), 496—505 |
[43] | McDaniel J. R., MacEwan S. R., Li X. H., Radford D. C., Landon C. D., Dewhhirst M., Chikoti A., Nano Lett., 2014, 14(5), 2890—2895 |
[44] | Choi H., Chu H. S., Chung M., Kim B. S., Won J. I., Biotechnol. Bioproc. E, 2016, 21(5), 620—626 |
[45] | Lukyanov A. N., Torchilin V. P., Adv. Drug Delivery Rev., 2004, 56, 1273—1289 |
[46] | Li Y., Ho D., Meng H., Chan T. R., An B., Yu H., Brodsky B., Jun A. S., Yu S. M., Bioconjugate Chem., 2013, 24, 9—16 |
[47] | Wang A. Y., Foss C. A., Leong S., Mo X., Pomper M. G., Yu S. M., Biomacromolecules, 2008, 9, 1755—1763 |
[48] | Luo T. Z., Kiick K. L., J. Am. Chem. Soc., 2015, 137(49), 15362—15365 |
[49] | Qin J. Y., Luo T. Z., Kiick K. L., Biomacromolecules, 2019, 20(4), 1514—1521 |
[50] |
Li Y., Foss C. A., Summerfield D. D., Doyle J. J., Torok C. M., Dietz H. C., Pomper M. G., Yu S. M., Proc. Natl. Acad. Sci., 2012, 109, 14767—14772
doi: 10.1073/pnas.1209721109 URL |
[51] |
Luo J. N., Tong Y. W., ACS Nano, 2011, 5, 7739—7747
doi: 10.1021/nn202822f URL |
[52] | Krishna O. D., Wiss K. T., Luo T. Z., Pochan D. J., Theato P., Kiick K. L., Soft Matt., 2012, 8, 3832—3840 |
[53] |
Xie Y. Y., Wang X. C., Huang R. L., Qi W., Wang Y. F., Su R. X., He Z. M., Langmuir, 2015, 31(9), 2885—2894
doi: 10.1021/la504757c URL |
[54] |
Kaufmann D., Fiedler A., Junger A., Auernheimer J., Kessler H., Weberskirch R., Macromol. Biosci., 2008, 8(6), 577—588
doi: 10.1002/(ISSN)1616-5195 URL |
[55] | Singh P., Brar S. K., Bajaj M., Narang N., Mithu V. S., Katare O. P., Wangoo N., Sharma R. K., Mater. Sci. Eng. C, 2017, 72, 590—600 |
[56] |
Dash B. C., Mahor S., Carroll O., Mathew A., Wang W. X., Woodhouse K. A., Pandit A., J. Control. Release, 2011, 152, 382—392
doi: 10.1016/j.jconrel.2011.03.006 URL |
[57] | Podder D., Sasmal S., Maji K., Haldar D., Cryst. Eng. Comm., 2016, 18(22), 4109—4114 |
[1] | 仵宇帅, 尚颖旭, 蒋乔, 丁宝全. 可控自组装DNA折纸结构作为药物载体的研究进展[J]. 高等学校化学学报, 2022, 43(8): 20220179. |
[2] | 李琳, 齐丰莲, 邱丽莉, 孟子晖. 基于六边形磁纳米片构建动态非晶态光学结构图案[J]. 高等学校化学学报, 2022, 43(8): 20220123. |
[3] | 俞彬, 谌小燕, 赵越, 陈卫昌, 肖新颜, 刘海洋. 氧化石墨烯基钴卟啉复合材料的电催化析氢反应[J]. 高等学校化学学报, 2022, 43(2): 20210549. |
[4] | 李波, 孟禹汐, 王雯雯, 臧宏瑛. 多核多氧硫钼酸盐化合物的合成及质子传导性能[J]. 高等学校化学学报, 2022, 43(1): 20210657. |
[5] | 杜顺福, 王文经, EL-SAYED El-Sayed M., 苏孔钊, 袁大强, 洪茂椿. 一种具有化学发光性能的锆基金属有机四面体[J]. 高等学校化学学报, 2022, 43(1): 20210628. |
[6] | 薛谨, 曹小卫, 刘依帆, 王敏. 纸质空心金纳米笼SERS传感器的制备及对非小细胞肺癌患者痰液中miRNAs的快速高灵敏检测[J]. 高等学校化学学报, 2021, 42(8): 2393. |
[7] | 刘冬生. 超分子作用构筑具有高光学不对称性的表面等离子纳米粒子手性组装体[J]. 高等学校化学学报, 2021, 42(6): 1619. |
[8] | 孙浩, 宫杰, 杨燕, 王新庆, 陈慧东. 三维有序In2O3纳米线阵列的合成及纳米结构有序度对气敏性能的影响[J]. 高等学校化学学报, 2021, 42(6): 1730. |
[9] | 高娟, 孙全虎, 黄长水. 石墨炔纳米材料的制备及在电化学能源中的应用[J]. 高等学校化学学报, 2021, 42(5): 1501. |
[10] | 窦树珍, 王中舜, 吕男. 硅纳米结构对表面辅助激光解吸/电离质谱检测性能的提高[J]. 高等学校化学学报, 2021, 42(4): 1156. |
[11] | 马卓远, 汪大洋. 分子自组装单层膜的表面浸润性研究现状和展望[J]. 高等学校化学学报, 2021, 42(4): 1031. |
[12] | 王雅雯, 李东, 梁文凯, 孙迎辉, 江林. 表面等离激元金属纳米粒子的多元化结构及应用[J]. 高等学校化学学报, 2021, 42(4): 1213. |
[13] | 李荣烨, 倪云霞, 刘丹丹, 李志, 程玉新, 夏明欣, 付小会. 一种新型温度响应性聚氨基酸/聚类肽嵌段共聚物的合成与表征[J]. 高等学校化学学报, 2021, 42(3): 850. |
[14] | 桂晨, 王颢霖, 邵柏璇, 杨育景, 徐光青. 熔盐辅助法制备g-C3N4纳米结构及其光催化制氢性能[J]. 高等学校化学学报, 2021, 42(3): 827. |
[15] | 胡灵, 殷垚, 柯国梁, 张晓兵. 基于DNA纳米结构的细胞间相互作用的调控[J]. 高等学校化学学报, 2021, 42(11): 3284. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||