高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (3): 827.doi: 10.7503/cjcu20200471

• 物理化学 • 上一篇    下一篇

熔盐辅助法制备g-C3N4纳米结构及其光催化制氢性能

桂晨, 王颢霖, 邵柏璇, 杨育景, 徐光青()   

  1. 合肥工业大学材料科学与工程学院, 合肥 230009
  • 收稿日期:2020-07-20 出版日期:2021-03-10 发布日期:2021-03-08
  • 通讯作者: 徐光青 E-mail:gqxu1979@hfut.edu.cn
  • 基金资助:
    合肥工业大学大学生创新创业训练计划项目(S20191035903)

Molten-salt-assistance Synthesis and Photocatalytic Hydrogen Evolution Performances of g-C3N4 Nanostructures

GUI Chen, WANG Haolin, SHAO Baixuan, YANG Yujing, XU Guangqing()   

  1. School of Materials Science and Engineering,Hefei University of Technology,Hefei 230009,China
  • Received:2020-07-20 Online:2021-03-10 Published:2021-03-08
  • Contact: XU Guangqing E-mail:gqxu1979@hfut.edu.cn
  • Supported by:
    ? Supported by the Undergraduate Innovation and Entrepreneurship Training Program Project of Hefei University of Technology, China(S20191035903)

摘要:

以尿素作为原料, 采用熔盐辅助热聚合法在KCl-NaCl-BaCl2体系中制备了带隙可调的g-C3N4纳米结构. 采用X射线衍射仪、 扫描电子显微镜、 X射线光电子能谱仪、 紫外-可见漫反射光谱仪及荧光光谱仪对产物的结构、 形貌、 成分及光学性能进行了表征. 对g-C3N4纳米结构可见光条件下的光催化制氢性能进行了测试, 研究了不同的尿素/熔盐比对其光催化性能的影响. 结果表明, 熔盐辅助热聚合法制备的g-C3N4 纳米结构吸收光谱出现明显宽化, 吸收边由普通热聚合法制备g-C3N4的约450 nm红移至约500 nm左右. 同时光生载流子复合几率明显降低, 从而有效提升其光催化制氢性能. 最优化的g-C3N4(60)样品析氢速率达到12301.1 μmol?g?1?h?1, 为普通热聚合法制备g-C3N4析氢速率的4倍.

关键词: g-C3N4纳米结构, 光催化制氢, 熔盐辅助法, 可见光响应

Abstract:

Using urea as raw material, g-C3N4 nanostructures with adjustable bandgap were prepared in KCl-NaCl-BaCl2 system by molten-salt-assistance thermal polymerization method. The structure, morphology, composition and optical properties of the products were characterized by X-ray diffraction, scanning electron microscope, X-ray photoelectron spectrometer, UV-Visible diffuse reflection spectrometer and fluorescence spectrometer, respectively. The photocatalytic performance of the products in visible light was tested, and the effects of different urea/molten salt ratios on the photocatalytic performance of g-C3N4 nanostructures were studied. The results show that the absorption spectra of g-C3N4 nanostructure prepared by molten-salt- assistance thermal polymerization manifest obvious broadening, and the absorption edge shifts from ca. 450 nm to ca. 500 nm, compared with the g-C3N4 prepared by ordinary thermal polymerization method. At the same time, the recombination rate of photogenerated carriers is obviously reduced, so the photocatalytic hydrogen production performance is effectively improved. The hydrogen evolution rate of the optimized g-C3N4(60) samples reach 12301.1 μmol?g?1?h?1, which is 4 times that of g-C3N4 prepared by ordinary thermal polymerization method.

Key words: g-C3N4 nanostructures, Photocatalytic hydrogen evolution, Molten-salt-assistance method, Visible light response

中图分类号: 

TrendMD: