高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (11): 2404.doi: 10.7503/cjcu20200411
• 庆祝《高等学校化学学报》复刊40周年专栏 • 上一篇 下一篇
苏高鸣,沈瑞晨,谈洁,袁荃
收稿日期:
2020-07-01
出版日期:
2020-11-10
发布日期:
2020-11-06
基金资助:
SU Gaoming, SHEN Ruichen, TAN Jie(), YUAN Quan(
)
Received:
2020-07-01
Online:
2020-11-10
Published:
2020-11-06
Contact:
TAN Jie,YUAN Quan
E-mail:tanjie416@hnu.edu.cn;yuanquan@whu.edu.cn
Supported by:
摘要:
长余辉荧光粉是一种新兴的有广泛应用前景的发光材料, 在停止激发后仍可保持发光. 近年来, 具有独特光学性质的长余辉荧光粉得到了发展, 其在光催化领域的应用也得到了广泛的研究. 长余辉材料具有脱离光源的特点, 可以有效地在黑暗环境中推动光催化反应的进行; 同时, 长余辉荧光粉的超长发光寿命使其在长时催化体系中占有重要地位, 使全天候光催化成为可能. 简单来说, 长余辉荧光粉被证明是一种新出现的功能材料, 在光催化方面具有前所未有的优势. 本综述总结了长余辉荧光粉在污染物降解、 杀菌消毒和高效制氢领域中应用的最新进展.
中图分类号:
TrendMD:
苏高鸣, 沈瑞晨, 谈洁, 袁荃. 长余辉荧光粉在光催化系统中的应用研究进展. 高等学校化学学报, 2020, 41(11): 2404.
SU Gaoming, SHEN Ruichen, TAN Jie, YUAN Quan. Progress on the Application of Long Persistent Phosphors in Photocatalytic System. Chem. J. Chinese Universities, 2020, 41(11): 2404.
Fig.2 Degradation of methyl orange using Sr2MgSi2O7: Eu2+, Dy3+ LLP?Ag3PO4 composites during the photocatalytic time process, in which the simulated sunlight(●, ▲) and visible light(○, △) were firstly used for illumination, followed by the removal of light source(A), the MO concentration?time curves of A(▲, △) and M15A1(●, ○) in illumination stage(B) and long afterglow stage(C), where M15A1 refers to a mass ratio of LPP/Ag3PO4=15, bar graph of the degradation efficiency during the whole photocatalytic process, where the blue bar and red bar represent the illumination and long persistent stage, respectively(D)[62]Copyright 2017, Royal Society of Chemistry.
Fig.3 Sterilization effect of UVC?LPP series on P. aeruginosa PAO1[77]Confocal micrograph of the blank control group(A) and four LPPs inactivated PAO1 with different X-ray irradiation times of 2?min(B), 5?min(C), 10?min(D), and 16?min(E), where the green and red colors refer to the live and dead cells.(F) The relation curve between the time that LPPs exposure to X-ray irradiation and the corresponding survival ratios of PAO1, where 100% refers to the viability of PAO1 under natural conditions.Copyright 2018, Springer Nature.
Fig.4 Schematic sketch of the afterglow mechanism of Pr3+ doped LaPO4 based on defect concentration and free radical participation[78](A) ESR spectra and 24 h decay of the Ca-144 h sample with and without X-ray irradiation, where 144 h means treated under 500 ℃ for 144 h. (B) Diagrammatic sketch of the radical implicated afterglow mechanism. The electron transitions are represented as black solid arrows. The electron and hole trap states are described as gray rectangles. The optical transitions of red, blue and UVC emissions are expressed as red, blue and purple arrows, respectively.Copyright 2020, John Wiley and Sons.
Fig.5 Diagrammatic sketch of the mechanism of Sr2MgSi2O7∶Eu2+, Dy3+ participated in the photocatalysis process[84](A)?Simple description of energy levels and photoinduced electron transfer processes. (B)—(D)?XPS spectra of Eu3d, Dy3d and Dy4d to demonstrate their behavior throughout the photocatalysis process.Copyright 2019, John Wiley and Sons.
Fig.6 Comparison of hydrogen generation process of the pristine g?C3N4, SrAl2O4:Eu2+, Dy3+ LPP, SrAl2O4:Eu2+, Dy3+@Au, g?C3N4@Au, g?C3N4@SrAl2O4:Eu2+, Dy3+, and g?C3N4@Au@SrAl2O4:Eu2+, Dy3+ composites(A), comparison of hydrogen generation process of g?C3N4@Au@xSrAl2O4:Eu2+, Dy3+ composites with different mass fractions(B)[85]Copyright 2019, Royal Society of Chemistry.
84 | Cui G., Yang X., Zhang Y., Fan Y., Chen P., Cui H., Liu Y., Shi X., Shang Q., Tang B., Angew. Chem., Int. Ed., 2019, 58(5), 1340—1344 |
85 | Liu X., Chen X., Li Y., Wu B., Luo X., Ouyang S., Luo S., Al Kheraif A. A., Lin J., J. Mater. Chem. A, 2019, 7(32), 19173—19186 |
86 | Wang C., Nie X., Shi Y., Zhou Y., Xu J., Xia X., Chen H., ACS Nano, 2017, 11(6), 5897—5905 |
1 | Li Y., Gecevicius M., Qiu J., Chem. Soc. Rev., 2016, 45(8), 2090—2136 |
2 | Matsuzawa T., Aoki Y., Takeuchi N., Murayama Y., J. Electrochem. Soc., 1996, 143(8), 2670—2673 |
3 | van den Eeckhout K., Smet P. F., Poelman D., Materials, 2010, 3(4), 2536—2566 |
4 | Zirkle C., Isis, 1959, 50(1), 68, 69 |
5 | Sidot. M., C R Acad. Sci. Paris, 1866,62, 999—1001 |
6 | Smet P. F., Moreels I., Hens Z., Poelman D., Materials, 2010, 3(4), 2834—2883 |
7 | Wang Y., Gong Y., Xu X., Li Y., J. Lumin., 2013, 133, 25—29 |
8 | Smet P. F., Botterman J., van den Eeckhout K., Korthout K., Poelman D., Opt. Mater., 2014, 36(11), 1913—1919 |
9 | Smet P. F., Viana B., Tanabe S., Peng M., Hölsä J., Chen W., Opt. Mater. Express, 2016, 6(4), 1414—1419 |
10 | Lin Z., Kabe R., Nishimura N., Jinnai K., Adachi C., Adv. Mater., 2018, 30(45), 1803713 |
11 | Lin Q., Li Z., Yuan Q., Chin. Chem. Lett., 2019, 30(9), 1547—1556 |
12 | Liu Y., Wang Y., Jiang K., Sun S., Qian S., Wu Q., Lin H., Talanta, 2020, 206, 10.1016/j.talanta.2019.120206 |
13 | Zhang Y., Huang R., Li H., Lin Z., Hou D., Guo Y., Song J., Song C., Lin Z., Zhang W., Wang J., Chu P. K., Zhu C., Small, 2020, e2003121 |
14 | Zeng W., Wang Y., Zheng M., Yang R., Luo Y., Yi X., Zhang R., J. Alloys Compd., 2020, 825, 10.1016/j.jallcom.2020.154143 |
15 | Zhang H., Zhao L., Tian S., Yang X., Liu Z., Yu X., Yang X., Zhang M., Qiu J., Xu X., J. Non⁃Cryst. Solids, 2020, 533, 10.1016/j.jnoncrysol.2019.119830 |
16 | Wu S., Li Y., Ding W., Xu L., Ma Y., Zhang L., Nano⁃Micro Lett., 2020, 12(1), 10.1007/s40820⁃020⁃0404⁃8 |
17 | Schneider J., Matsuoka M., Takeuchi M., Zhang J. L., Horiuchi Y., Anpo M., Bahnemann D. W., Chem. Rev., 2014, 114(19), 9919—9986 |
18 | Linsebigler A. L., Lu G., Yates J., J T, Chem. Rev., 1995, 95(3), 735—758 |
19 | Cai T., Liu Y., Wang L., Dong W., Zeng G., J. Photochem. Photobiol. C, 2019, 39, 58—75 |
20 | Zhang J. Y., Pan F., Hao W., Ge Q., Wang T. M., Appl. Phys. Lett., 2004, 85(23), 5778—5780 |
21 | Fang Y., Ma Y., Zheng M., Yang P., Asiri A. M., Wang X., Coord. Chem. Rev., 2018, 373, 83—115 |
22 | Jin X., Ye L., Xie H., Chen G., Coord. Chem. Rev., 2017, 349, 84—101 |
23 | Knoer G., Coord. Chem. Rev., 2015, 304, 102—108 |
24 | Maeda K., ACS Catal., 2013, 3(7), 1486—1503 |
25 | Fox M. A., Dulay M. T., Chem. Rev., 1993, 93, 1, 341—357 |
26 | Cheng B., Zhang Z., Han Z., Xiao Y., Lei S., Crystengcomm, 2011, 13(10), 3545—3550 |
27 | Dong G., Xiao X., Zhang L., Ma Z., Bao X., Peng M., Zhang Q., Qiu J., J. Mater. Chem., 2011, 21(7), 2194—2203 |
28 | Hou C., Wang Y., Zhu H., Zhou L., J. Mater. Chem. B, 2015, 3(14), 2883—2891 |
29 | Le Masne de Chermont Q., Chanac C., Seguin J., Pelle F., Maitrejean S., Jolivet J. P., Liver Transplant., 2007, 13(11), 1604—1604 |
30 | Luo H., Bos A. J. J., Dobrowolska A., Dorenbos P., Phys. Chem. Chem. Phys., 2015, 17(23), 15419—15427 |
31 | Smet P. F., Avci N., Van den Eeckhout K., Poelman D., Opt. Mater. Express, 2012, 2(10), 1306—1313 |
32 | Teng Y., Zhou J., Khisro S. N., Zhou S., Qiu J., Mater. Chem. Phys., 2014, 147(3), 772—776 |
33 | Xia Z., Li Q., Li G., Xiong M., Liao L., J. Cryst. Growth, 2011, 318(1), 958—961 |
34 | Yoshimura F., Nakamura K., Wakai F., Hara M., Yoshimoto M., Odawara O., Wada H., Appl. Surf. Sci., 2011, 257(6), 2170—2175 |
35 | Wang Y. H., Wang L., Zhang S. H., Chem. J. Chinese Universities, 2005, 26(11), 1990—1993 |
36 | Liu H., Hu X., Wang J., Liu M., Wei W., Yuan Q., Chin. Chem. Lett., 2018, 29(11), 1641—1644 |
37 | Brito H. F., Holsa J., Laamanen T., Lastusaari M., Malkamaki M., Rodrigues L. C. V., Opt. Mater. Express, 2012, 2(4), 371—381 |
38 | Wang J., Ma Q., Wang Y., Shen H., Yuan Q., Nanoscale, 2017, 9(19), 6204—6218 |
39 | Li Y., Zhou S., Dong G., Peng M., Wondraczek L., Qiu J., Sci. Rep., 2014, 4, 4059 |
40 | Sakar M., Nguyen C., Vu M., Do T., ChemSusChem, 2018, 11(5), 809—820 |
41 | Li F., Li Z., Cai Y., Zhang M., Shen Y., Wang W., Mater. Lett., 2017, 208, 111—114 |
42 | Li H., Yin S., Wang Y., Sato T., Environ. Sci. Technol., 2012, 46(14), 7741—7745 |
43 | Li H., Yin S., Wang Y., Sato T., J. Catal., 2012, 286, 273—278 |
44 | Li H., Yin S., Wang Y., Sato T., RSC Adv., 2012, 2(8), 3234—3236 |
45 | Li H., Yin S., Wang Y., Sato T., Appl. Catal. B, 2013, 132, 487—492 |
46 | Zhou Q., Peng F., Ni Y., Kou J., Lu C., Xu Z., J. Photochem. Photobiol. A, 2016, 328, 182—188 |
47 | Sui D., Chai Y., Chem. Lett., 2017, 46(4), 516—519 |
48 | Fan H. T., Zhao C. Y., Liu S., Shen H., J. Chem. Eng. Data, 2017, 62(3), 1099—1105 |
49 | Vandezande P., Gevers L. E. M., Vankelecom I. F. J., Chem. Soc. Rev., 2008, 37(2), 365—405 |
50 | Solis M., Solis A., Ines Perez H., Manjarrez N., Flores M., Process Biochem., 2012, 47(12), 1723—1748 |
51 | Panizza M., Cerisola G., Water Res., 2009, 43(2), 339—344 |
52 | Wang C., Li J., Lv X., Zhang Y., Guo G., Energy Environ. Sci., 2014, 7(9), 2831—2867 |
53 | Li X., Yu J., Jaroniec M., Chem. Soc. Rev., 2016, 45(9), 2603—2636 |
54 | Li H., Yin S., Sato T., Appl. Catal. B, 2011, 106(3/4), 586—591 |
55 | Yin H., Chen X., Hou R., Zhu H., Li S., Huo Y., Li H., ACS Appl. Mater. Interfaces, 2015, 7(36), 20076—20082 |
56 | Huo Y., Chen X., Zhang J., Pan G., Jia J., Li H., Appl. Catal. B, 2014, 148, 550—556 |
57 | Huo Y., Hou R., Chen X., Yin H., Gao Y., Li H., J. Mater. Chem. A, 2015, 3(28), 14801—14808 |
58 | Li K., Zhang H., He Y., Tang T., Ying D., Wang Y., Sun T., Jia J., Chem. Eng. J., 2015, 268, 10—20 |
59 | Liu M., Sunada K., Hashimoto K., Miyauchi M., J. Mater. Chem. A, 2015, 3(33), 17312—17319 |
60 | Yu Z., Li F., Sun L., Energy Environ. Sci., 2015, 8(3), 760—775 |
61 | Zhou J., Huang J., Xia Y., Ou H., Li Z., Sci. Total Environ., 2020, 699, 10.1016/j.scitotenv.2019.134342 |
62 | Wu H., Wang Z., Koike K., Negishi N., Jin Y., Catal. Sci. Technol., 2017, 7(17), 3736—3746 |
63 | Lu Y., Zhang X., Chu Y., Yu H., Huo M., Qu J., Crittenden J. C., Huo H., Yuan X., Appl. Catal. B, 2018, 224, 239—248 |
64 | Elimelech M., Phillip W. A., Science, 2011, 333(6043), 712—717 |
65 | Flemming H., Schaule D., Griebe T., Schmitt J., Tamachkiarowa A., Desalination, 1997, 113(2—3), 215—225 |
66 | Kang G., Gao C., Chen W., Jie X., Cao Y., Yuan Q., J. Membr. Sci., 2007, 300(1/2), 165—171 |
67 | Johnson T. A., Rehak E. A., Sahu S. P., Ladner D. A., Cates E. L., Environ. Sci. Technol., 2016, 50(21), 11912—11921 |
68 | Kadyan S., Singh S., Simantilleke A. P., Singh D., Optik, 2020, 212, 10.1016/j.ijleo.2020.164671 |
69 | AbdukaderA., Renagul A., Ailijiang T., Adil M., Chem.J . Chinese Universities, 2016, 37(5), 810—816 |
70 | De Guzman GNA., Fang M., Liang C., Bao Z., Hu S., Liu R., J. Lumin., 2020, 219, 10.1016/j.jlumin.2019.116944 |
71 | Wang B., Chen Z., Li X., Zhou J., Zeng Q., J. Alloys Compd., 2020, 812, 10.1016/j.jallcom.2019.152119 |
72 | Puxian X., Mingying P., Opt. Mater. X, 2019, 2, 100022 |
73 | Li Z., Li H., Sun H., J. Rare Earths, 2020, 38(2), 124—129 |
74 | Sun H., Gao Q., Wang A., Liu Y., Wang X., Liu F., Opt. Mater. Express, 2020, 10(5), 1296—1302 |
75 | Yan S., Liu F., Zhang J., Wang X., Liu Y., Phys. Rev. Appl., 2020, 13(4), 10.1103/PhysRevApplied.13.044051 |
76 | Wang X., Chen Y., Liu F., Pan Z., Nat. Commun., 2020, 11(1), 10.1038/s41467⁃020⁃16015⁃z |
77 | Yang Y., Li Z., Zhang J., Lu Y., Guo S., Zhao Q., Wang X., Yong Z., Li H., Ma J., Kuroiwa Y., Moriyoshi C., Hu L., Zhang L., Zheng L., Sun H., Light: Sci. Appl., 2018, 7, 88 |
78 | Li H., Liu Q., Ma J., Feng Z., Liu J., Zhao Q., Kuroiwa Y., Moriyoshi C., Ye B., Zhang J., Duan C., Sun H., Adv. Opt. Mater., 2020, 8(4), 1901727 |
79 | Tee S. Y., Win K. Y., Teo W. S., Koh L., Liu S., Teng C. P., Han M., Adv. Sci., 2017, 4(5), 1600337 |
80 | Jacobson M. Z., Colella W. G., Golden D. M., Science, 2005, 308(5730), 1901—1905 |
81 | Dutta S., J. Ind. Eng. Chem., 2014, 20(4), 1148—1156 |
82 | Li R., Chin. J. Catal., 2017, 38(1), 5—12 |
83 | Wang Q., Hisatomi T., Jia Q., Tokudome H., Zhong M., Wang C., Pan Z., Takata T., Nakabayashi M., Shibata N., Li Y., Sharp I., Kudo A., Yamada T., Domen K., Nat. Mater., 2016, 15(6), 611—615 |
[1] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[2] | 王新天, 李攀, 曹越, 洪文浩, 耿忠璇, 安志洋, 王昊宇, 王桦, 孙斌, 朱文磊, 周旸. 单原子材料在二氧化碳催化中的技术经济分析与产业化应用前景[J]. 高等学校化学学报, 2022, 43(9): 20220347. |
[3] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[4] | 林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同[J]. 高等学校化学学报, 2022, 43(9): 20220312. |
[5] | 赵盈喆, 张建玲. 金属-有机框架基材料在二氧化碳光催化转化中的应用[J]. 高等学校化学学报, 2022, 43(7): 20220223. |
[6] | 夏雾, 任颖异, 刘京, 王锋. 壳聚糖包裹CdSe量子点组装体的水相可见光催化CO2还原[J]. 高等学校化学学报, 2022, 43(7): 20220192. |
[7] | 邱丽琪, 姚向阳, 何良年. 可见光驱动丰产金属卟啉类配合物催化的二氧化碳选择性还原反应[J]. 高等学校化学学报, 2022, 43(7): 20220064. |
[8] | 龚妍熹, 王建兵, 柴歩瑜, 韩元春, 马云飞, 贾超敏. 钾掺杂g-C3N4薄膜光阳极的制备及光电催化氧化降解水中双氯芬酸钠性能[J]. 高等学校化学学报, 2022, 43(6): 20220005. |
[9] | 王广琦, 毕艺洋, 王嘉博, 石洪飞, 刘群, 张钰. 非贵金属三元复合Ni(PO3)2-Ni2P/CdS NPs异质结的构建及可见光高效催化产氢性能[J]. 高等学校化学学报, 2022, 43(6): 20220050. |
[10] | 宋颖颖, 黄琳, 李庆森, 陈立妙. CuO/BiVO4光催化剂的制备及光催化CO2还原性能[J]. 高等学校化学学报, 2022, 43(6): 20220126. |
[11] | 沙蒙, 许维庆, 吴志超, 顾文玲, 朱成周. 单原子材料类酶催化及生物医学应用研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220077. |
[12] | 陶雨, 欧鸿辉, 雷永鹏, 熊禹. 单原子催化剂在光催化二氧化碳还原中的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220143. |
[13] | 冯丽, 邵兰兴, 李思骏, 全文选, 庄金亮. 超薄Sm-MOF纳米片的合成及可见光催化降解芥子气模拟剂性能[J]. 高等学校化学学报, 2022, 43(4): 20210867. |
[14] | 孟祥钰, 詹琦, 武亚南, 马晓双, 姜靖逸, 孙岳明, 代云茜. 光热效应增强的Au/RGO/Na2Ti3O7光催化加氢性能[J]. 高等学校化学学报, 2022, 43(3): 20210655. |
[15] | 郭彪, 赵晨灿, 刘芯辛, 于洲, 周丽景, 袁宏明, 赵震. 表面水热碳层对磁性NiFe2O4八面体光催化活性的影响[J]. 高等学校化学学报, 2022, 43(11): 20220472. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||