高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (3): 20210655.doi: 10.7503/cjcu20210655
孟祥钰, 詹琦, 武亚南, 马晓双, 姜靖逸, 孙岳明(), 代云茜(
)
收稿日期:
2021-09-10
出版日期:
2022-03-10
发布日期:
2021-10-13
通讯作者:
孙岳明,代云茜
E-mail:sun@seu.edu.cn;daiy@seu.edu.cn
基金资助:
MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming(), DAI Yunqian(
)
Received:
2021-09-10
Online:
2022-03-10
Published:
2021-10-13
Contact:
SUN Yueming,DAI Yunqian
E-mail:sun@seu.edu.cn;daiy@seu.edu.cn
Supported by:
摘要:
将典型的光热等离激元石墨烯和纳米金简便地负载在钛酸钠(Na2Ti3O7)载体上, 构建出具有较窄禁带宽度和较高光催化活性的Au/RGO/Na2Ti3O7光热辅助光催化体系. 研究发现, 石墨烯片层与金纳米颗粒在光照下, 通过局域表面等离激元共振效应诱导产生大量的热电子, 以活化反应物并降低反应活化能, 其引发的光热效应还可精准提升光催化体系中反应位点附近的温度, 从而大幅提升光催化反应速率. 通过构建特殊微支结构, 进一步增强了Au/RGO/Na2Ti3O7催化剂对光的捕获, 并限域锚定高表面能催化剂以增强体系的稳定性. 在光热、 光催化的高效协同增强下, Au/RGO/Na2Ti3O7催化剂体系对对硝基苯酚和肉桂醛的加氢反应均表现出增强的光催化活性. 光热辅助下的Au/RGO/Na2Ti3O7光催化剂在对硝基苯酚反应中的转换频率(TOF)值高达54.4 min-1, 反应活化能显著降低至15.78 kJ/mol, 且其在长效测试中表现出良好的稳定性(4次循环催化后, 转化率的保持率近90%).
中图分类号:
TrendMD:
孟祥钰, 詹琦, 武亚南, 马晓双, 姜靖逸, 孙岳明, 代云茜. 光热效应增强的Au/RGO/Na2Ti3O7光催化加氢性能. 高等学校化学学报, 2022, 43(3): 20210655.
MENG Xiangyu, ZHAN Qi, WU Yanan, MA Xiaoshuang, JIANG Jingyi, SUN Yueming, DAI Yunqian. Photothermal Enhanced Photocatalytic Hydrogenation Performance of Au/RGO/Na2Ti3O7. Chem. J. Chinese Universities, 2022, 43(3): 20210655.
Fig.1 Schematic illustration of the preparation of the Au/RGO/Na2Ti3O7(A) and TEM images of RGO/Na2Ti3O7(B) and Au/RGO/Na2Ti3O7(C,D)The arrows in Fig.1(B) highlight the RGO, the white dots highlight the contact interface between RGO and Na2Ti3O7. The arrows in Fig.1(C) highlight the Au nanoparticles.
Fig.4 Normalized concentration changes of 4?NP and the corresponding catalytic conversion catalyzed by Au/RGO/Na2Ti3O7 with different GO input contents under visible?light irradiation(A), the conversion efficiency from 4?NP to 4?AP catalyzed by Au/RGO/Na2Ti3O7 with different GO input contents under visible?light irradiation(B)
Catalyst | P/(J·s-1) | η(%) | K/min-1 | TOF/min-1 | TOFmass/(min-1·μg-1) | Ref. |
---|---|---|---|---|---|---|
66%?Au/RGO/Na2Ti3O7 | 153 | 18.2 | 0.240 | 38.2 | 7.17 | This work |
60%?Au/RGO/Na2Ti3O7 | 112 | 13.4 | 0.399 | 54.5 | 10.4 | This work |
50%?Au/RGO/Na2Ti3O7 | 101 | 12.3 | 0.278 | 51.4 | 9.87 | This work |
33%?Au/RGO/Na2Ti3O7 | 98.9 | 11.7 | 0.137 | 37.9 | 7.30 | This work |
Fe3O4@Ag | — | — | — | 17.1 | — | [ |
Au/N?doped carbon | — | — | — | 11.4 | — | [ |
Au/Co3O4 | — | — | — | 5.01 | — | [ |
Table 1 Comparison on photocatalytic and photothermal performance of different photocatalytic systems*
Catalyst | P/(J·s-1) | η(%) | K/min-1 | TOF/min-1 | TOFmass/(min-1·μg-1) | Ref. |
---|---|---|---|---|---|---|
66%?Au/RGO/Na2Ti3O7 | 153 | 18.2 | 0.240 | 38.2 | 7.17 | This work |
60%?Au/RGO/Na2Ti3O7 | 112 | 13.4 | 0.399 | 54.5 | 10.4 | This work |
50%?Au/RGO/Na2Ti3O7 | 101 | 12.3 | 0.278 | 51.4 | 9.87 | This work |
33%?Au/RGO/Na2Ti3O7 | 98.9 | 11.7 | 0.137 | 37.9 | 7.30 | This work |
Fe3O4@Ag | — | — | — | 17.1 | — | [ |
Au/N?doped carbon | — | — | — | 11.4 | — | [ |
Au/Co3O4 | — | — | — | 5.01 | — | [ |
Scheme 1 Schematic illustration of the photothermal?promoted photocatalytic reaction catalyzed by Au/RGO/Na2Ti3O7 with different RGO contents under visible?light irradiation
Fig.6 Conversion of 4?NP catalyzed by Au/RGO/Na2Ti3O7 with different GO input contents in visible light irradiation and dark condition within 10 min(A), the conversion of 4?NP catalyzed by 60%?Au/RGO/Na2Ti3O7 under visible?light irradiation with different wavelengths(B)
Catalyst | Temperature increment/℃ | Wavelength of light irradiation/nm | ηquantum (%) |
---|---|---|---|
60%?Au/RGO/Na2Ti3O7 | 6.6 | 450 | 54.4 |
60%?Au/RGO/Na2Ti3O7 | 6.15 | 500 | 47.5 |
60%?Au/RGO/Na2Ti3O7 | 6.3 | 550 | 44.4 |
Table 2 Temperature increment of reaction system and quantum efficiency of Au/RGO/Na2Ti3O7under light with different wavelengths
Catalyst | Temperature increment/℃ | Wavelength of light irradiation/nm | ηquantum (%) |
---|---|---|---|
60%?Au/RGO/Na2Ti3O7 | 6.6 | 450 | 54.4 |
60%?Au/RGO/Na2Ti3O7 | 6.15 | 500 | 47.5 |
60%?Au/RGO/Na2Ti3O7 | 6.3 | 550 | 44.4 |
Fig.7 Relationship between reaction rate and reaction temperature(A), scheme for illustrating activation energy of reactions under light and dark(B), schematic illustration for the reaction route with(C) and without(D) light?induced photothermal enhancement of 4?NP catalyzed by 60%?Au/RGO/Na2Ti3O7
44 | Buscema M., Groenendijk D. J., Blanter S. I., Steele G. A., van der Zant H. S. J., Castellanos⁃Gomez A., Nano Lett., 2014, 14, 3347—3352 |
45 | Jacob M., Arvin G., Microelectronics, McGraw⁃Hill, New York, 1987 |
46 | Chen S., Fu H., Zhang L., Wan Y., Appl. Catal. B, 2019, 248, 22—30 |
47 | Zhou W., Zhou Y., Liang Y., Feng X., Zhou H., RSC Adv., 2015, 5, 50505—50511 |
48 | Yang Y., Luo S., Guo S., Chao Y., Yang H., Li Y., Int. J. Hydrog. Energy, 2017, 42, 29236—29243 |
49 | Chen Y. C., Hsu Y. K., Popescu R., Gerthsen D., Lin Y. G., Feldmann C., Nat. Commun., 2018, 9, 232 |
50 | Tagliabue G., DuChene J. S., Abdellah M., Habib A., Gosztola D. J., Hattori Y., Cheng W. H., Zheng K., Canton S. E., Sundararaman R., Nat. Mater., 2020, 19, 1312—1318 |
51 | Kwon S. J., Han T. H., Ko T. Y., Li N., Kim Y., Kim D. J., Bae S. H., Yang Y., Hong B. H., Kim K. S., Nat. Commun., 2018, 9, 2037 |
52 | Moon J. Y., Kim M., Kim S. I., Xu S., Choi J. H., Whang D., Watanabe K., Taniguchi T., Park D. S., Seo J., Sci. Adv., 2020, 6, eabc6601 |
53 | Meng X. Y., Yang J. H., Ramakrishna S., Sun Y. M., Dai Y. Q., J. Mater. Chem. A, 2020, 8, 16570—16581 |
54 | Lang Q., Chen Y., Huang T., Yang L., Zhong S., Wu L., Chen J., Bai S., Appl. Catal. B, 2018, 220, 182—190 |
55 | Han B., Zhang Y., Chen Q., Sun H., Adv. Funct. Mater., 2018, 28, 1802235 |
56 | Zhu M. Y., Dai Y. Q., Fu W. L., Wu Y. N., Zou X. X., You T. Y., Sun Y. M., Nanotechnology, 2018, 29, 165707 |
57 | Ashter S. A., Mechanics of Materials, William Andrew Publishing, New York, 2014 |
58 | Iben Ayad A., Luart D., Ould Dris A., Guénin E., Nanomaterials, 2020, 10, 1169 |
59 | Sahiner N., Demirci S., Asia⁃Pac J. Chem. Eng., 2019, 14, e2305 |
60 | Naseem K., Begum R., Wu W., Irfan A., Nisar J., Azam M., Farooqi Z., Int. J. Environ. Sci. Tech., 2021, 18, 1809—1820 |
61 | Verma A., Pal S., Kuntail J., Kamal N., Mandal R. K., Sinha I., J. Environ. Chem. Eng., 2021, 9, 105655 |
62 | Farrag M., Microporous Mesoporous Mater., 2016, 232, 248—255 |
63 | Li C., Wang P., Tian Y., Xu X., Hou H., Wang M., Qi G., Jin Y., ACS Catal., 2017, 7, 5391—5398 |
64 | Zhou Y., Zhu Y., Yang X., Huang J., Chen W., Lv X., Li C., Li C., RSC Adv., 2015, 5, 50454—50461 |
65 | Bhogeswararao S., Pavan Kumar V., Chary K., Srinivas D., Catal. Lett., 2013, 143, 1266—1276 |
66 | Wang G., Xin H., Wang Q., Wu P., Li X., J. Catal., 2020, 382, 1—12 |
67 | Huang X., Zhang L., Li C., Tan L., Wei Z., ACS Catal., 2019, 9, 11307—11316 |
68 | Hao C. H., Guo X. N., Pan Y. T., Chen S., Jiao Z. F., Yang H., Guo X. Y., J. Am. Chem. Soc., 2016, 138, 9361—9364 |
1 | Zhao Y. F., Li Z. H., Li M. Z., Liu J. J., Liu X. W., Waterhouse G. I. N., Wang Y. S., Zhao J. Q., Gao W., Zhang Z. S., Long R., Zhang Q. H., Gu L., Liu X., Wen X. D., Ma D., Wu L. Z., Tung C. H., Zhang T. R., Adv. Mater., 2018, 30, 1803127 |
2 | Chen G. B., Gao R., Zhao Y. F., Li Z. H., Waterhouse G. I. N., Shi R., Zhao J. Q., Zhang M. T., Shang L., Sheng G. Y., Zhang X. P., Wen X. D., Wu L. Z., Tung C. H., Zhang T. R., Adv. Mater., 2018, 30, 1704663 |
3 | Shi R., Cao Y. H., Bao Y. J., Zhao Y. F., Waterhouse G. I. N., Fang Z. Y., Wu L. Z., Tung C. H., Yin Y. D., Zhang T. R., Adv. Mater., 2017, 29, 1700803 |
4 | Wu X., Gao T., Han C. H., Xu J. S., Owens G., Xu H. L., Sci. Bull., 2019, 64, 1625—1633 |
5 | Cai M., Wu Z., Li Z., Wang L., Sun W., Tountas A., Li C., Wang S., Feng K., Xu A., Tang S., Tavasoli A., Peng M., Liu W., Helmy A., He L., Ozin G., Zhang X., Nat. Energy, 2021, 6, 807—814 |
6 | Xin Y., Yu K., Zhang L., Yang Y., Yuan H., Li H., Wang L., Zeng J., Adv. Mater., 2021, 33, 2008145 |
7 | Mateo D., Cerrillo J. L., Durini S., Gascon J., Chem. Soc. Rev., 2021, 50, 2173—2210 |
8 | Li Y., Hao J., Song H., Zhang F., Bai X., Meng X., Zhang H., Wang S., Hu Y., Ye J., Nat. Comm., 2019, 10, 2359 |
9 | Yin D., Zhang J., Li W., Fu Y., Catal. Lett., 2021, 151, 1902—1910 |
10 | Zhang N., Yang M. Q., Liu S., Sun Y., Xu Y. J., Chem. Rev., 2015, 115, 10307—10377 |
11 | Meng X. Y., Yang J. H., Liu W., Ramakrishna S., Sun Y. M., Dai Y. Q., ACS Appl. Mater. Interfaces, 2021, 13, 26561—26572 |
12 | Gan Z., Wu X., Meng M., Zhu X., Yang L., Chu P. K., ACS Nano, 2014, 8, 9304—9310 |
13 | Zedan A. F., Moussa S., Terner J., Atkinson G., El⁃Shall M. S. J. A. N., ACS Nano, 2013, 7, 627—636 |
14 | Wu F. R., Liu Y. J., Lu X. M., Zhu B. S., Chem. J. Chinese Universities, 2020, 41(3), 465—472 (邬丰任, 刘永佳, 陆学民, 朱邦尚. 高等学校化学学报, 2020, 41(3), 465—472) |
15 | Inagaki T., Kagami K., Arakawa E. T., Phys. Rev. B, 1981, 24, 3644—3646 |
16 | Wang S., Zeng B., Li C., Chinese J. Catal., 2018, 39, 1219—1227 |
17 | Zhang Q., Fan X., Wang H., Chen S., Quan X., RSC Adv., 2016, 6, 41114—41121 |
18 | Zhou Y., Zhu Y. H., Yang X. L., Huang J. F., Chen W., Lv X. M., Li C. Y., Li C. Z., RSC Adv., 2015, 5, 50454—50461 |
19 | Dai Y. Q., Lu P., Cao Z. M., Campbell C. T., Xia Y. N., Chem. Soc. Rev., 2018, 47, 4314—4331 |
20 | Bavykin D. V., Friedrich J. M.,Walsh F. C., Adv. Mater., 2006, 18, 2807—2824 |
21 | Kong D., Wang Y., Huang S., Lim Y. V., Zhang J., Sun L., Liu B., Chen T., Valdivia Y., Alvarado P., Yang H. Y., J. Mater. Chem. A, 2019, 7, 12751—12762 |
22 | Yang J., Mou C. Y., Appl. Catal. B, 2018, 231, 283—291 |
23 | Wang X. T., Zhu M. Y., Sun Y. M., Fu W. L., Gu Q., Zhang C., Zhang Y. J., Dai Y. Q., Sun Y. M., Part. Part. Syst. Charact., 2016, 33, 140—149 |
24 | Wang X. M., Tao L. Q., Yuan M., Wang Z. P., Yu J., Xie D., Luo F., Chen X., Wong C., Nat. Commun., 2021, 12,1776 |
25 | Zhong X., Sun Y., Chen X., Zhuang G., Li X., Wang J. G., Adv. Funct. Mater., 2016, 26, 5778—5786 |
26 | Dai Y. Q., Jing Y., Zeng J., Qi Q., Wang C. L., Goldfeld D., Xu C. H., Zheng Y. P., Sun Y. M., J. Mater. Chem., 2011, 21, 18174—18179 |
27 | Xu L., Yang L., Bai X., Du X., Wang Y., Jin P., Chem. Eng. J., 2019, 373, 238—250 |
28 | Liu J., Ke J., Li D., Sun H., Liang P., Duan X., Tian W., Tade M. O., Liu S., Wang S., ACS Appl. Mater. Interfaces, 2017, 9, 11678—11688 |
29 | Lv N., Li Y., Huang Z., Li T., Ye S., Dionysiou D. D., Song X., Appl. Catal. B, 2019, 246, 303—311 |
30 | Wu Y. N., Sun Y. B., Fu W. L., Meng X. Y., Zhu M. Y., Ramakrishna S., Dai Y. Q., ACS Appl.Nano Mater., 2020, 3, 2713—2722 |
31 | Yu H., Peng Y., Yang Y., Li Z. Y., npj Comput. Mater., 2019, 5,45 |
32 | Tang J., Yan X., Huang W., Engelbrekt C., Duus J., Ulstrup J., Xiao X., Zhang J., Biosens. Bioelectron., 2020, 167, 112500 |
33 | Moon I. K., Lee J., Ruoff R. S., Lee H., Nat. Commun., 2010, 1, 73 |
34 | Kong X. K., Sun Z. Y., Chen M., Chen C. L., Chen Q. W., Energy Environ. Sci., 2013, 6, 3260—3266 |
35 | Ruan M., Song P., Liu J., Li E., Xu W., J. Phys. Chem. C, 2017, 121, 25882—25887 |
36 | Zhang P., Shao C., Zhang Z., Zhang M., Mu J., Guo Z., Liu Y., Nanoscale, 2011, 3, 3357—3363 |
37 | Strachan J., Barnett C., Masters A. F., Maschmeyer T., ACS Catal., 2020, 10, 5516—5521 |
38 | Li C., Wang P., Tian Y., Xu X., Hou H., Wang M., Qi G., Jin Y., ACS Catal., 2017, 7, 5391—5398 |
39 | Gao L., Li R., Sui X., Li R., Chen C., Chen Q., Environ. Sci. Technol., 2014, 48, 10191 |
40 | Liu Y., Xu H., Yu H., Yang H., Chen T., Sci. Rep., 2020, 10, 20075 |
41 | Najafi M., Azizian S., Appl. Nanosci., 2020, 10,3827—3837 |
42 | Jakhar R., Yap J. E., Joshi R., Carbon, 2020, 170, 277—293 |
43 | Cheng R., Yin L., Hu R., Liu H., Wen Y., Liu C., He J., Adv. Mater., 2021, 33, 2008329 |
[1] | 滕镇远, 张启涛, 苏陈良. 聚合物单原子光催化剂的载流子分离和表面反应机制[J]. 高等学校化学学报, 2022, 43(9): 20220325. |
[2] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[3] | 林治, 彭志明, 贺韦清, 沈少华. 单原子与团簇光催化: 竞争与协同[J]. 高等学校化学学报, 2022, 43(9): 20220312. |
[4] | 赵盈喆, 张建玲. 金属-有机框架基材料在二氧化碳光催化转化中的应用[J]. 高等学校化学学报, 2022, 43(7): 20220223. |
[5] | 丁杨, 王万辉, 包明. 多孔骨架固定分子催化剂催化CO2加氢制备甲酸研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220309. |
[6] | 邱丽琪, 姚向阳, 何良年. 可见光驱动丰产金属卟啉类配合物催化的二氧化碳选择性还原反应[J]. 高等学校化学学报, 2022, 43(7): 20220064. |
[7] | 夏雾, 任颖异, 刘京, 王锋. 壳聚糖包裹CdSe量子点组装体的水相可见光催化CO2还原[J]. 高等学校化学学报, 2022, 43(7): 20220192. |
[8] | 龚妍熹, 王建兵, 柴歩瑜, 韩元春, 马云飞, 贾超敏. 钾掺杂g-C3N4薄膜光阳极的制备及光电催化氧化降解水中双氯芬酸钠性能[J]. 高等学校化学学报, 2022, 43(6): 20220005. |
[9] | 于鹏东, 关兴华, 王冬冬, 辛志荣, 石强, 殷敬华. 新型光、 热双响应形状记忆聚合物的制备与性能[J]. 高等学校化学学报, 2022, 43(6): 20220085. |
[10] | 王广琦, 毕艺洋, 王嘉博, 石洪飞, 刘群, 张钰. 非贵金属三元复合Ni(PO3)2-Ni2P/CdS NPs异质结的构建及可见光高效催化产氢性能[J]. 高等学校化学学报, 2022, 43(6): 20220050. |
[11] | 宋颖颖, 黄琳, 李庆森, 陈立妙. CuO/BiVO4光催化剂的制备及光催化CO2还原性能[J]. 高等学校化学学报, 2022, 43(6): 20220126. |
[12] | 陶雨, 欧鸿辉, 雷永鹏, 熊禹. 单原子催化剂在光催化二氧化碳还原中的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220143. |
[13] | 冯丽, 邵兰兴, 李思骏, 全文选, 庄金亮. 超薄Sm-MOF纳米片的合成及可见光催化降解芥子气模拟剂性能[J]. 高等学校化学学报, 2022, 43(4): 20210867. |
[14] | 郭彪, 赵晨灿, 刘芯辛, 于洲, 周丽景, 袁宏明, 赵震. 表面水热碳层对磁性NiFe2O4八面体光催化活性的影响[J]. 高等学校化学学报, 2022, 43(11): 20220472. |
[15] | 邵文惠, 胡欣, 尚静, 林峰, 金黎明, 权春善, 张艳梅, 李军. 高效广谱复合光催化抗菌剂Ag-AgVO3/BiVO4的设计合成及抗菌机制[J]. 高等学校化学学报, 2022, 43(10): 20220132. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||