高等学校化学学报 ›› 2005, Vol. 26 ›› Issue (12): 2289.

• 研究论文 • 上一篇    下一篇

石墨负极充放电过程的DFT研究

黄宗浩1,阚玉和1,2,徐栋1,马淑荣1,杨桂霞1,孟素慈1,苏忠民1   

  1. 1.东北师范大学化学学院,长春130024;
    2.淮阴师范学院化学系,江苏省低维材料化学重点建设实验室,淮安223000
  • 收稿日期:2004-12-26 出版日期:1905-03-14 发布日期:1905-03-14
  • 通讯作者: 黄宗浩(1945年出生),男,教授,博士生导师,从事光、电功能材料的理论与实验研究. E-mail:huangzh295@nenu.edu.cn
  • 基金资助:

    国家自然科学基金(批准号:20474008)资助.

Theoretical Studies on the Charge and Discharge Processes of Graphite Cathode with DFT Method

HUANG Zong-Hao1*, KAN Yu-He1,2, XU Dong1, MA Shu-Rong1, YANG Gui-Xia1, MENG Su-Ci1, SU Zhong-Min1   

  1. 1. Faculty of Chemistry, Northeast Normal University, Changchun 130024, China;
    2. Department of Chemistry, Huaiyin Teachers College, Key Laboratory for Chemistry
    of Low-Dimensional Materials of Jiangsu Province, Huaian 223000, China
  • Received:2004-12-26 Online:1905-03-14 Published:1905-03-14
  • Contact: HUANG Zong-Hao;E-mail:huangzh295@nenu.edu.cn

摘要:

用量子化学DFT-B3LYP/6-31G(d)方法计算了锂沿石墨层堆积的Zig-zag和Arm-chair方向嵌脱及在石墨表面附着和脱附的过程.结果表明,锂嵌入过程是体系能量升高的储能过程,势垒最高点是锂在碳原子正投影位置,即在C—C键投影位置,而在苯环中心投影位置最低,为嵌锂的最佳位置,锂嵌脱的最佳途径应为arm-chair方向;锂在石墨表面附着也是储能过程,苯环中心上方是石墨表面近距离附着机率最高的位置.

关键词: 锂离子二次电池;石墨;充放电过程;密度泛函理论, 锂离子二次电池, 石墨, 充放电过程, 密度泛函理论

Abstract:

The intercalation and absorption processes of Li in graphite cathode of Li-secondary battery were discussed by DFT-B3LYP/6-31G(d) method of quantum chemistry. The storage energy curves of the intercalation processes through the routes of arm-chair and zig-zag directions and the adsorption processes of Li on the graphite surface along three typical directions were calculated. The results show that (1) the intercalation process of Li is a process of energy storage; when Li is just located on the projecting position of carbon atom, the system energy is the highest; when Li is located on the projecting position of carbon-carbon bond, the system energy is higher, and when the Li located on the projecting position of benzene ring center, the system possesses the lowest energy and is the most stable. The arm-chair direction is the most probable route for intercalating of Li to graphite cathode; (2) the process of adsorption of Li on the graphite cathode surface is a process of energy storage, too; the position over the center of benzene ring is the most probable adsorption position when Li is close to the graphite surface. The present article provides a very useful image for understanding and improving the charge and discharge properties of the graphite cathode.

Key words: Lithium-ion secondary battery; Graphite; Charge-discharge process; Density function theory(DFT), Lithium-ion secondary battery, Graphite, Charge-discharge process, Density function theory(DFT)

中图分类号: 

TrendMD: