高等学校化学学报 ›› 2024, Vol. 45 ›› Issue (2): 20230450.doi: 10.7503/cjcu20230450
• 综合评述 • 上一篇
卢春宇, 井源, 魏晓飞, 姚世伟, 王智飞, 王姝斌, 戴昉纳()
收稿日期:
2023-10-25
出版日期:
2024-02-10
发布日期:
2023-12-21
通讯作者:
戴昉纳
E-mail:fndai@upc.edu.cn
作者简介:
第一联系人:共同第一作者.
基金资助:
LU Chunyu, JING Yuan, WEI Xiaofei, YAO Shiwei, WANG Zhifei, WANG Shubin, DAI Fangna()
Received:
2023-10-25
Online:
2024-02-10
Published:
2023-12-21
Contact:
DAI Fangna
E-mail:fndai@upc.edu.cn
Supported by:
摘要:
金属-有机框架(Metal-organic framework, MOF)材料因其出色的比表面积、 众多的活性位点、 可调的孔径范围和灵活的框架结构, 在气体分离、 储能和催化等领域发挥着重要的作用. 近年来, 采用高表面积、 永久孔隙以及包含固有的氧化还原活性位点的MOF材料作为超级电容器的电极材料引起了研究者们的关注. 本文主要从MOF在超级电容器领域的研究出发, 着重介绍了其性能和结构对超级电容器电化学性能的影响, 阐述了关于MOF性能调控和结构设计的研究进展. 首先, MOF的电导率是影响超级电容器能量密度和功率密度的一大关键性能, 而其材料的特殊结构又直接影响了导电率. 其次, MOF丰富的活性位点和可调的孔径尺寸等特点都为其导电性能的提升创造了条件. 此外, MOF的结构稳定性与超级电容器的循环性能密切相关, 稳定结构的构建是增强超级电容器循环性能的重要前提. 最后, 对MOF未来在超级电容器领域中的研究进行了展望, 结构的调控仍然是这一领域的重要研究方向.
中图分类号:
TrendMD:
卢春宇, 井源, 魏晓飞, 姚世伟, 王智飞, 王姝斌, 戴昉纳. 金属-有机框架材料在超级电容器中的优势和进展. 高等学校化学学报, 2024, 45(2): 20230450.
LU Chunyu, JING Yuan, WEI Xiaofei, YAO Shiwei, WANG Zhifei, WANG Shubin, DAI Fangna. Advantages and Research Progress of Metal-organic Framework in Supercapacitors. Chem. J. Chinese Universities, 2024, 45(2): 20230450.
Fig.1 Schematic diagram of influencing factors of MOFs in supercapacitor applications(supercapacitor[28], electrical conductivity[29,30], stability[31~33] and structure[34~36])Supercapacitor: Copyright 2020, Elsevier B.V.; Stability: Copyright 2019, Wiley‐VCH; Copyright 2017, American Chemical Society; Copyright 2022, Elsevier B.V.; Electrical conductivity: Copyright 2020, Wiley‐VCH.; Copyright 2012, American Chemical Society; Structure: Copyright 2020, Wiley‐VCH.; Copyright 2017, the Royal Society of Chemistry; Copyright 2021, Elsevier B.V..
Fig.2 Molecular structure of Ni3(HITP)2(A)[8], structure of Fe2(BDT)3(B), (Fe—N—N—)∞ chains as the presumed charge transport pathways in material(C)[38], schematic illustration of the in situ growth of M2[CuPc(NH)8] on carbon cloth(D)[39](A) Copyright 2016, Springer Nature; (B, C) Copyright 2018, American Chemical Society; (D) Copyright 2021, American Chemical Society.
Fig.3 Partial structures(A, B) and different coordination environments in inorganic secondary building units(C—E) of Zn2[Ni(dbg)2] crystal[29](A) Along the c⁃axis; (B) perpendicular to the c⁃axis; (C) Mn2[Ni(dbg)2]; (D) Zn2[Ni(dbg)2]; (E) Cd2[Ni(dbg)2].Copyright 2020, Wiley‐VCH..
Fig.4 Structure of Co⁃CAT⁃1(A)[30], chemical structure and schematic diagram of the nanosheet(B)[45] and schematic diagram of Cu3(BTC)2 and TCNQ molecules(C)[46](A) Copyright 2012, American Chemical Society; (B) Copyright 2013, American Chemical Society; (C) Copyright 2013, American Association for the Advancement of Science.
Conductive mechanism | MOF | Ligand | Method | σ/(S·cm-1) | Ref. |
---|---|---|---|---|---|
Through⁃space | Zn2(TTFTB) | ![]() | TRTS | 5.0×10-4 | [ |
Co2(TTFTB) | 2⁃Probe sc | 1.5×10-5 | |||
Mn2(TTFTB) | 2⁃Probe sc | 9×10-5 | |||
Cd2(TTFTB) | 2⁃Probe sc | 2.9×10-4 | |||
La4(TTFTB)4 | 2⁃Probe pellet | 2.5×10-6 | [ | ||
Mn(dca)2[TTF(py)4]0.5 | ![]() | 2⁃Probe pellet | 6.3×10-9 | [ | |
Mn(N3)[TTF(py)4](ClO4) | 2⁃Probe pellet | 1.5×10-9 | |||
MnCl2[TTF(py)4] | 2⁃Probe pellet | 2×10-10 | |||
La1+x (HOTP) | 2⁃Probe pellet | 8.2×10-4 | [ | ||
Nd1+x (HOTP) | 2⁃Probe pellet | 8.0×10-4 | |||
Ho1+x (HOTP) | 2⁃Probe pellet | 0.053 | |||
Yb1+x (HOTP) | 2⁃Probe pellet | 0.010 | |||
Cu3(HOTP)2 | 4⁃Probe film | 0.29 | [ | ||
Cu3(HOTP)(THQ) | 2⁃Probe pellet | 0.3 | [ | ||
Through⁃bond | Cu[Cu(pdt)2] | M=Cu, Ni | — | 6×10-4 | [ |
Cu[Ni(pdt)2] | 2⁃Probe pellet | 2.6×10-3 | [ | ||
Cu3(BTC)2 | ![]() | 2⁃Probe pellet | 8.3×10-8— 5.3×10-11 | [ | |
Co2(AnBHB) | ![]() | vdP pellet | 4×10-8 | [ | |
Mg2(AnBHB) | vdP pellet | 5×10-9 | |||
Mn2(AnBHB) | vdP pellet | 3×10-8 | |||
Ni2(AnBHB) | vdP pellet | 4×10-7 | |||
Zn2(AnBHB) | vdP pellet | 6×10-8 |
Table 1 Summary of some conductive MOF in recent years
Conductive mechanism | MOF | Ligand | Method | σ/(S·cm-1) | Ref. |
---|---|---|---|---|---|
Through⁃space | Zn2(TTFTB) | ![]() | TRTS | 5.0×10-4 | [ |
Co2(TTFTB) | 2⁃Probe sc | 1.5×10-5 | |||
Mn2(TTFTB) | 2⁃Probe sc | 9×10-5 | |||
Cd2(TTFTB) | 2⁃Probe sc | 2.9×10-4 | |||
La4(TTFTB)4 | 2⁃Probe pellet | 2.5×10-6 | [ | ||
Mn(dca)2[TTF(py)4]0.5 | ![]() | 2⁃Probe pellet | 6.3×10-9 | [ | |
Mn(N3)[TTF(py)4](ClO4) | 2⁃Probe pellet | 1.5×10-9 | |||
MnCl2[TTF(py)4] | 2⁃Probe pellet | 2×10-10 | |||
La1+x (HOTP) | 2⁃Probe pellet | 8.2×10-4 | [ | ||
Nd1+x (HOTP) | 2⁃Probe pellet | 8.0×10-4 | |||
Ho1+x (HOTP) | 2⁃Probe pellet | 0.053 | |||
Yb1+x (HOTP) | 2⁃Probe pellet | 0.010 | |||
Cu3(HOTP)2 | 4⁃Probe film | 0.29 | [ | ||
Cu3(HOTP)(THQ) | 2⁃Probe pellet | 0.3 | [ | ||
Through⁃bond | Cu[Cu(pdt)2] | M=Cu, Ni | — | 6×10-4 | [ |
Cu[Ni(pdt)2] | 2⁃Probe pellet | 2.6×10-3 | [ | ||
Cu3(BTC)2 | ![]() | 2⁃Probe pellet | 8.3×10-8— 5.3×10-11 | [ | |
Co2(AnBHB) | ![]() | vdP pellet | 4×10-8 | [ | |
Mg2(AnBHB) | vdP pellet | 5×10-9 | |||
Mn2(AnBHB) | vdP pellet | 3×10-8 | |||
Ni2(AnBHB) | vdP pellet | 4×10-7 | |||
Zn2(AnBHB) | vdP pellet | 6×10-8 |
Fig.5 Schematic diagram of the synthesis of ZIF⁃67(A), schematic diagram of the synthesis of ZIF⁃PPy nanosheets(B)[32], schematic diagram of the synthesis of Cu⁃MOF(C), schematic diagram of the synthesis of Cu⁃MOF/rGO(D)[33], comparison of cycling performance of PPy, ZIF⁃67 and ZIF⁃PPy⁃2 at a current density of 20 A/g(E)[32], the cycling performance of Cu⁃MOF/rGO⁃GCE(glass carbon electrode) for 5000 cycles at 15 A/g(F)[33](F) The picture at the bottom right is the beginning and last 10 cycles of the Cu-MOF/rGO-GCE electrode.(A, B, E) Copyright 2017, American Chemical Society; (C, D, F) Copyright 2022, Elsevier B.V.
Fig.6 Single⁃step growth process of dual⁃layered NCM⁃based MOF on Ni foam(A—C)[65], the layer⁃by⁃ layer growth of Cu3(HHTP)2 film on the functionalized substrate(D)[53], growth process of Cu2(TCPP) MOF film on dielectric substrate(E), schematic diagram of preparing wafer⁃scale 2D Cu2(TCPP) MOF film(F), schematic diagram of the coordination reaction between TCPP and Cu2+(G)[34](A—C) Copyright 2020, Springer; (D) Copyright 2020, Wiley‐VCH; (E—G) Copyright 2020, Wiley‐VCH.
Fig.7 Schematic diagram of the synthesis process of M⁃MOF(A), specific capacity of Co/Ni⁃MOF, Zn/Ni⁃MOF and Ni⁃MOF at different current densities(B), cycling performance of Co/Ni⁃MOF, Zn/Ni⁃MOF and Ni⁃MOF at a discharge current density of 10 A/g(C)[35], schematic diagram of the synthesis process of CoNi⁃MOF⁃74, CoNi⁃2, CoNi⁃6 and CoNi⁃12(D), N2 absorption and desorption isotherms of CoNi⁃2, CoNi⁃6 and CoNi⁃12(E), areal capacitance of CoNi⁃MOF⁃74, CoNi⁃2, CoNi⁃6 and CoNi⁃12 at different current densities(F)[69], schematic diagram of the synthesis process of Co9S8@NiO composites(G), N2 absorption and desorption isotherms of Co9S8 and Co9S8@NiO(H), specific capacitances of Co9S8, NiO and Co9S8@NiO at different current densities(I)[70](A—C) Copyright 2017, the Royal Society of Chemistry; (D—F) Copyright 2022, Wiley‐VCH; (G—I) Copyright 2021, Elsevier Inc.
Fig.8 Schematic diagram of the synthesis of perovskite LaFeO3 using MOF gel(A)[72], schematic diagram of the synthesis of HPF/C and HPC based on NaCl⁃assisted MOF gel templates(B)[36], schematic diagram of preparation of BTCC(C)[73](A) Copyright 2020, Elsevier B.V.; (B) Copyright 2021, Elsevier B.V.; (C) Copyright 2021, Elsevier Inc.
1 | Samireddi S., Aishwarya V., Shown I., Muthusamy S., Unni S. M., Wong K. T., Chen K. H., Chen L. C., Small, 2021, 17(46), 2103823 |
2 | Xu C. R., Pet. Technol., 2022, 188—190 |
许拯瑞. 石化技术, 2022, 188—190 | |
3 | Pan Y., Zhao Y. X., Mu S. J., Wang Y., Jiang C. M., Liu Q. Z., Fang Q. R., Xue M., Qiu S. L., J. Mater. Chem. A, 2017, 5(20), 9544—9552 |
4 | Mehtab T., Yasin G., Arif M., Shakeel M., Korai R. M., Nadeem M., Muhammad N., Lu X., J. Energy Storage, 2019, 21, 632—646 |
5 | Amali A. J., Sun J. K., Xu Q., Chem. Commun., 2014, 50(13), 1519—1522 |
6 | Alaş M. Ö., Güngör A., Genç R., Erdem E., Nanoscale, 2019, 11(27), 12804—12816 |
7 | Jayaramulu K., Dubal D. P., Nagar B., Ranc V., Tomanec O., Petr M., Datta K. K. R., Zboril R., Gómez‐Romero P., Fischer R. A., Adv. Mater., 2018, 30(15), 1705789 |
8 | Sheberla D., Bachman J. C., Elias J. S., Sun C. J., Shao⁃Horn Y., Dincă M., Nat. Mater., 2017, 16(2), 220—224 |
9 | Cheng J. Y., Chen S. M., Chen D., Dong L. B., Wang J. J., Zhang T. L., Jiao T. P., Liu B., Wang H., Kai J. J., J. Mater. Chem. A, 2018, 6(41), 20254—20266 |
10 | Furukawa H., Cordova K. E., O’keeffe M., Yaghi O. M., Science, 2013, 341(6149), 1230444 |
11 | Dai F. N., Wang X. K., Wang Y. T., Liu Z. N., Sun D. F., Angew. Chem. Int. Ed., 2020, 59(50), 22372—22377 |
12 | Fan W. D., Wang X., Zhang X. R., Liu X. P., Wang Y. T., Kang Z. X., Dai F. N., Xu B., Wang R. M., Sun D. F., ACS Cent. Sci., 2019, 5(7), 1261—1268 |
13 | Zhang X., Chen Z., Liu X., Hanna S. L., Wang X., Taheri⁃Ledari R., Maleki A., Li P., Farha O. K., Chem. Soc. Rev., 2020, 49(20), 7406—7427 |
14 | Rosi N. L., Eckert J., Eddaoudi M., Vodak D. T., Kim J., O’keeffe M., Yaghi O. M., Science, 2003, 300(5622), 1127—1129 |
15 | Shao K., Wen H. M., Liang C. C., Xiao X. Y., Gu X. W., Chen B. L., Qian G. D., Li B., Angew. Chem. Int. Ed., 2022, 61(41), e202211523 |
16 | Jiang C. H., Hao C. L., Wang X. K., Liu H. Y., Wei X. F., Xu H. K., Wang Z. F., Ouyang Y. G., Guo W. Y., Dai F. N., Chem. Eng. J., 2023, 453, 139713 |
17 | Xu H. K., Wei X. F., Zeng H., Jiang C. H., Wang Z. F., Ouyang Y. G., Lu C. Y., Jing Y., Yao S. W., Dai F. N., Nano Research, 2023, 16, 8614—8637 |
18 | Huang Z. D., Xu B., Li Z. G., Ren J. W., Mei H., Liu Z. N., Xie D. G., Zhang H. B., Dai F. N., Wang R. M., Small, 2020, 16(44), 2004231 |
19 | Zhou Z., Mukherjee S., Hou S., Li W., Elsner M., Fischer R. A., Angew. Chem. Int. Ed., 2021, 60(37), 20551—20557 |
20 | He Y. Z., Hou X. F., Guo J. W., He Z. H., Guo T., Liu Y., Zhang Y. T., Zhang J. W., Feng N. P., Carbohydr. Polym., 2020, 235, 115935 |
21 | Han Z., Zhang R., Jiang J., Chen Z., Ni Y., Xie W., Xu J., Zhou Z., Chen J., Cheng P., J. Am. Chem. Soc., 2023, 145(18), 10149—10158 |
22 | Liu J., Jiang J., Zhou Q., Chen Z., Zhang R., Xu X., Han X., Yang S., Zhou Z., Cheng P., eScience, 2023, 3(2), 100094 |
23 | Sundriyal S., Kaur H., Bhardwaj S. K., Mishra S., Kim K. H., Deep A., Coord. Chem. Rev., 2018, 369, 15—38 |
24 | Wang L., Han Y., Feng X., Zhou J., Qi P., Wang B., Coord. Chem. Rev., 2016, 307, 361—381 |
25 | Chen L. F., Xu Q., Science, 2017, 358(6361), 304—305 |
26 | Ren C., Jia X., Zhang W., Hou D., Xia Z., Huang D., Hu J., Chen S., Gao S., Adv. Funct. Mater., 2020, 30(45), 2004519 |
27 | Zheng S. S., Li Q., Xue H. G., Pang H., Xu Q., Natl. Sci. Rev., 2020, 7(2), 305—314 |
28 | Ajdari F. B., Kowsari E., Shahrak M. N., Ehsani A., Kiaei Z., Torkzaban H., Ershadi M., Eshkalak S. K., Haddadi⁃Asl V., Chinnappan A., Coord. Chem. Rev., 2020, 422, 213441 |
29 | Xie L. S., Park S. S., Chmielewski M. J., Liu H., Kharod R. A., Yang L., Campbell M. G., Dincă M., Angew. Chem. Int. Ed., 2020, 59(44), 19623—19626 |
30 | Hmadeh M., Lu Z., Liu Z., GáNdara F., Furukawa H., Wan S., Augustyn V., Chang R., Liao L., Zhou F., Perre E., Ozolins V., Suenaga K., Duan X. F., Dunn B., Yamamto Y., Terasaki O., Yaghi O. M., Chem. Mater., 2012, 24(18), 3511—3513 |
31 | Wang F. X., Liu Z. C., Yang C. Q., Zhong H. X., Nam G., Zhang P. P., Dong R. H., Wu Y. P., Cho J., Zhang J., Feng X. L., Adv. Mater., 2020, 32(4), 1905361 |
32 | Xu X. T., Tang J., Qian H. Y., Hou S. J., Bando Y., Hossain M. S. A., Pan L., Yamauchi Y., ACS Appl. Mater. Interfaces, 2017, 9(44), 38737—38744 |
33 | Krishnan S., Gupta A. K., Singh M. K., Guha N., Rai D. K., Chem. Eng. J., 2022, 435, 135042 |
34 | Liu Y. X., Wei Y. N., Liu M. H., Bai Y. C., Wang X. Y., Shang S. C., Du C. S., Gao W. Q., Chen J. Y., Liu Y. Q., Adv. Mater., 2021, 33(13), 2007741 |
35 | Jiao Y., Pei J., Chen D. H., Yan C. S., Hu Y. Y., Zhang Q., Chen G., J. Mater. Chem. A, 2017, 5(3), 1094—1102 |
36 | Zhang Y. D., Shao R., Xu W., Ding J. F., Wang Y., Yan X. H., Shi W. Y., Wang M., Chem. Eng. J., 2021, 419, 129576 |
37 | Zhu B. J., Wen D. S., Liang Z. B., Zou R. Q., Coord. Chem. Rev., 2021, 446, 214119 |
38 | Xie L. S., Sun L., Wan R., Park S. S., Degayner J. A., Hendon C. H., Dincă M., J. Am. Chem. Soc., 2018, 140(24), 7411—7414 |
39 | Zhang P. P., Wang M. C., Liu Y. N., Yang S., Wang F. X., Li Y., Chen G. B., Li Z. C., Wang G., Zhu M. S., Dong R. H., Yu M. H., Schmidt O. G., Feng X. L., J. Am. Chem. Soc., 2021, 143(27), 10168—10176 |
40 | Tang L. P., Study on Electronic Structure and Physical Properties of Monolayer Metal⁃BHT based on π⁃d Conjugate Conduction, Hunan University, Changsha, 2019 |
唐粱坡. 基于π⁃d共轭导电的单层金属-BHT电子结构及其物性研究, 长沙: 湖南大学, 2019 | |
41 | Dong H. L., Fu X. L., Liu J., Wang Z. R., Hu W. P., Adv. Mater., 2013, 25(43), 6158—6183 |
42 | Sun L., Campbell M. G., Dincă M., Angew. Chem. Int. Ed., 2016, 55(11), 3566—3579 |
43 | Takaishi S., Hosoda M., Kajiwara T., Miyasaka H., Yamashita M., Nakanishi Y., Kitagawa Y., Yamaguchi K., Kobayashi A., Kitagawa H., Inorg. Chem., 2009, 48(19), 9048—9050 |
44 | Martín N., Chem. Commun., 2013, 49(63), 7025—7027 |
45 | Kambe T., Sakamoto R., Hoshiko K., Takada K., Miyachi M., Ryu J. H., Sasaki S., Kim J., Nakazato K., Takata M., Nishihara H., J. Am. Chem. Soc., 2013, 135(7), 2462—2465 |
46 | Talin A. A., Centrone A., Ford A. C., Foster M. E., Stavila V., Haney P., Kinney R. A., Szalai V., El Gabaly F., Yoon H. P., Léonard F., Allendorf M. D., Science, 2014, 343(6166), 66—69 |
47 | Darago L. E., Aubrey M. L., Yu C. J., Gonzalez M. I., Long J. R., J. Am. Chem. Soc., 2015, 137(50), 15703—15711 |
48 | Dong H. H., Gao H. G., Geng J. R., Hou X. S., Gao S. N., Wang S. W., Chou S. L., J. Phys. Chem. C, 2021, 125(38), 20814—20820 |
49 | Narayan T. C., Miyakai T., Seki S., Dincă M., J. Am. Chem. Soc., 2012, 134(31), 12932—12935 |
50 | Castells‐Gil J., Mañas‐Valero S., Vitórica‐Yrezábal I. J., Ananias D., Rocha J., Santiago R., Bromley S. T., Baldoví J. J., Coronado E., Souto M., Chem. Eur. J., 2019, 25(54), 12636—12643 |
51 | Yu Q., Su J., Ma J. P., Leong C. F., D’alessandro D. M., Wang H. Y., Kurmoo M., Zuo J. L., Cryst. Growth Des., 2019, 19(5), 3012—3018 |
52 | Skorupskii G., Trump B. A., Kasel T. W., Brown C. M., Hendon C. H., Dincă M., Nat. Chem., 2020, 12(2), 131—136 |
53 | Song X. Y., Wang X. Y., Li Y. S., Zheng C. Z., Zhang B. W., Di C. A., Li F., Jin C., Mi W. B., Chen L., Angew. Chem. Int. Ed., 2020, 59(3), 1118—1123 |
54 | Yao M. S., Zheng J. J., Wu A. Q., Xu G., Nagarkar S. S., Zhang G., Tsujimoto M., Sakaki S., Horike S., Otake K., Kitagawa S., Angew. Chem. Int. Ed., 2020, 59(1), 172—176 |
55 | Roberts M. N., Nagle J. K., Finden J. G., Branda N. R., Wolf M. O., Inorg. Chem., 2009, 48(1), 19—21 |
56 | Kobayashi Y., Jacobs B., Allendorf M. D., Long J. R., Chem. Mater., 2010, 22(14), 4120—4122 |
57 | Luna⁃Triguero A., Vicent⁃Luna J., Gómez⁃Álvarez P., Calero S., J. Phys. Chem. C, 2017, 121(5), 3126—3132 |
58 | Scheurle P. I., Mähringer A., Jakowetz A. C., Hosseini P., Richter A. F., Wittstock G., Medina D. D., Bein T., Nanoscale, 2019, 11(43), 20949—20955 |
59 | Howarth A. J., Liu Y., Li P., Li Z., Wang T. C., Hupp J. T., Farha O. K., Nat. Rev. Mater., 2016, 1(3), 15018 |
60 | Yuan S., Feng L., Wang K. C., Pang J. D., Bosch M., Lollar C., Sun Y. J., Qin J. S., Yang X. Y., Zhang P., Adv. Mater., 2018, 30(37), 1704303 |
61 | Nguyen D., Schepisi I., Amir F., Chem. Eng. J., 2019, 378, 122150 |
62 | Yue L. G., Chen L., Wang X. Y., Lu D. Z., Zhou W. L., Shen D. J., Yang Q., Xiao S. F., Li Y. Y., Chem. Eng. J., 2023, 451, 138687 |
63 | Zheng L. X., Song J. L., Ye X. Y., Wang Y. Z., Shi X. W., Zheng H. J., Nanoscale, 2020, 12(25), 13811—13821 |
64 | Yan W., Su J., Yang Z. M., Lv S., Jin Z., Zuo J. L., Small, 2021, 17(22), 2005209 |
65 | Nagaraju G., Sekhar S. C., Ramulu B., Hussain S., Narsimulu D., Yu J. S., Nanomicro. Lett., 2021, 13, 17 |
66 | Wang L. J., Saji S. E., Wu L. J., Wang Z. X., Chen Z. J., Du Y. P., Yu X. F., Zhao H. T., Yin Z. Y., Small, 2022, 18(33), 2201642 |
67 | Sennu P., Aravindan V., Lee Y. S., J. Power Sources, 2016, 306, 248—257 |
68 | Wang J. L., Liang J., Lin Y. C., Shao K. J., Chang X., Qian L. J., Li Z., Hu P. Z., Chem. Eng. J., 2022, 446, 137368 |
69 | Zhou J. J., Ji W. X., Xu L., Yang Y., Wang W. Q., Ding H. L., Xu X. C., Wang W. W., Zhang P. L., Hua Z. L., Chen L. Y., Chem. Eng. J., 2022, 428, 132123 |
70 | Wang J. M., Huang Y., Han X. P., Zhang S., Wang M. Y., Yan J., Chen C., Zong M., J. Colloid Interface Sci., 2021, 603, 440—449 |
71 | Kazemi S. H., Hosseinzadeh B., Kazemi H., Kiani M. A., Hajati S., ACS Appl. Mater. Interfaces, 2018, 10(27), 23063—23073 |
72 | Zhang Y. D., Ding J. F., Xu W., Wang M., Shao R., Sun Y., Lin B. P., Chem. Eng. J., 2020, 386, 124030 |
73 | Liu N. N., Liu X. G., Pan J. Q., J. Colloid Interface Sci., 2022, 606, 1364—1373 |
74 | Zhang Z. J., Liu M. D., Li C., Wenzel W., Heinke L., Small, 2022, 18(39), 2200602 |
[1] | 张宏淑, 梁攀, 薛颖颖, 韦瑶瑶. 二元包合水合物储氢及促进剂作用的理论研究[J]. 高等学校化学学报, 2024, 45(1): 20230383. |
[2] | 杨颖楠, 孙启明. EAB分子筛的合成及在甲醇制烯烃反应中的应用[J]. 高等学校化学学报, 2023, 44(8): 20230119. |
[3] | 时宇, 张榴, 国霞, 王阳, 肖海芹, 房进, 周祎, 张茂杰. 聚合物添加剂作为形貌调节剂提升全小分子有机太阳能电池的效率和稳定性[J]. 高等学校化学学报, 2023, 44(7): 20230047. |
[4] | 高凤雨, 陈都, 罗宁, 姚小龙, 段二红, 易红宏, 赵顺征, 唐晓龙. MnO x -CeO2催化剂的氯苯氧化性能及反应机理[J]. 高等学校化学学报, 2023, 44(4): 20220690. |
[5] | 刘军辉, 李紫家, 吴树昌, 谢在来, 陈艺全. 生物质巨菌草衍生炭的合成及在超级电容器中的应用[J]. 高等学校化学学报, 2023, 44(4): 20220653. |
[6] | 夏傲, 曾啸雄, 李佳萌, 陈军, 谈国强. Al3+离子掺杂 δ-MnO2的制备和电化学性能[J]. 高等学校化学学报, 2023, 44(4): 20220658. |
[7] | 王鹏飞, 富文豪, 孙少妮, 曹学飞, 袁同琦. 纤维素纳米晶模板法制备多级孔炭材料及其电化学性能[J]. 高等学校化学学报, 2023, 44(2): 20220497. |
[8] | 张玲玲, 董欢欢, 何祥喜, 李丽, 李林, 吴星樵, 侴术雷. 中空碳材料用于钠离子电池负极的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220620. |
[9] | 毕如一, 赵吉路, 王江艳, 于然波, 王丹. 中空多壳层CoFe2O4的制备及锂离子电池性能研究[J]. 高等学校化学学报, 2023, 44(1): 20220453. |
[10] | 楚宇逸, 兰畅, 罗二桂, 刘长鹏, 葛君杰, 邢巍. 单原子铈对弱芬顿效应活性位点氧还原稳定性的提升[J]. 高等学校化学学报, 2022, 43(9): 20220294. |
[11] | 郑安妮, 金磊, 杨家强, 王赵云, 李威青, 杨防祖, 詹东平, 田中群. 5,5-二甲基乙内酰脲在化学镀铜中的作用[J]. 高等学校化学学报, 2022, 43(8): 20220191. |
[12] | 冯丽, 邵兰兴, 李思骏, 全文选, 庄金亮. 超薄Sm-MOF纳米片的合成及可见光催化降解芥子气模拟剂性能[J]. 高等学校化学学报, 2022, 43(4): 20210867. |
[13] | 王红宁, 黄丽, 清江, 马腾洲, 蒋伟, 黄维秋, 陈若愚. 香蒲基生物炭的活化及对VOCs吸附的应用[J]. 高等学校化学学报, 2022, 43(4): 20210824. |
[14] | 李伟辉, 李浩博, 曾诚, 梁昊樾, 陈佳俊, 李俊勇, 李会巧. 热压法构筑锂负极聚偏氟乙烯基双功能保护层的研究[J]. 高等学校化学学报, 2022, 43(2): 20210629. |
[15] | 董明杰, 王璇, 董海峰, 张学记. 金属-有机框架材料在癌症诊疗中的应用[J]. 高等学校化学学报, 2022, 43(12): 20220575. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||