高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (7): 20230149.doi: 10.7503/cjcu20230149
收稿日期:
2023-03-30
出版日期:
2023-07-10
发布日期:
2023-04-25
通讯作者:
李腾飞,林禹泽
E-mail:tengfei@iccas.ac.cn;linyz@iccas.ac.cn
基金资助:
SI Wenqin1,2, LI Tengfei1(), LIN Yuze1,2(
)
Received:
2023-03-30
Online:
2023-07-10
Published:
2023-04-25
Contact:
LI Tengfei, LIN Yuze
E-mail:tengfei@iccas.ac.cn;linyz@iccas.ac.cn
Supported by:
摘要:
近几年, 受益于稠环电子受体材料的蓬勃发展, 有机太阳能电池的能量转换效率从富勒烯时代的12%迅速提高到非富勒烯时代的20%. 其中, 非对称结构的分子设计策略发挥了重要作用. 本文按照稠环骨架、 末端基团和侧链3种非对称分子设计策略, 综合评述了非对称稠环电子受体的研究进展, 并讨论了其中的结构-性能关系; 最后, 对非对称稠环电子受体的未来发展进行了展望.
中图分类号:
TrendMD:
司文钦, 李腾飞, 林禹泽. 非对称稠环光伏电子受体. 高等学校化学学报, 2023, 44(7): 20230149.
SI Wenqin, LI Tengfei, LIN Yuze. Asymmetric Fused-ring Photovoltaic Electron Acceptors. Chem. J. Chinese Universities, 2023, 44(7): 20230149.
Acceptor | λ | EHOMO/ELUMO(eV) | Donor | JSC/(mA·cm-2) | VOC/V | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
ITIC | 703 | -5.71/-3.97 | PBT1⁃C | 14.9 | 0.97 | 69.3 | 10.0 | [ |
TPTT⁃IC | 692 | -5.78/-3.95 | PBT1⁃C | 15.5 | 0.96 | 69.4 | 10.3 | [ |
MeIC1 | 714 | -5.59/-5.39 | PBDB⁃T | 18.32 | 0.93 | 74.1 | 12.58 | [ |
TPT⁃2F | 698 | -5.84/-4.06 | PBT1⁃C | 13.89 | 0.87 | 68.6 | 8.33 | [ |
TPTT⁃2F | 717 | -5.75/-4.04 | PBT1⁃C | 15.82 | 0.88 | 73.2 | 10.17 | [ |
TPTTT⁃2F | 724 | -5.69/-4.01 | PBT1⁃C | 17.63 | 0.92 | 74.5 | 12.03 | [ |
F5IC | 694 | -5.82/-4.05 | PTB7⁃Th | 13.43 | 0.64 | 62.1 | 5.31 | [ |
AOIC | 811 | -5.50/-3.93 | PTB7⁃Th | 24.32 | 0.74 | 74.3 | 13.3 | [ |
IUIC2 | 865 | -5.32/-3.86 | PTB7⁃Th | 10.77 | 0.76 | 51.5 | 4.06 | [ |
IDT6CN⁃M | 693 | -5.62/-3.90 | PBDB⁃T | 15.97 | 0.92 | 76.1 | 11.23 | [ |
IDT8CN⁃M | 699 | -5.54/-3.91 | PBDB⁃T | 17.11 | 0.92 | 78.9 | 12.43 | [ |
ABP4T⁃4F | 782 | -5.65/-3.85 | PM6 | 21.2 | 0.92 | 75.1 | 15.2 | [ |
BP5T⁃4F | 813 | -5.63/-3.88 | PM6 | 23.8 | 0.89 | 76.3 | 16.9 | [ |
BP4T⁃4F | 826 | -5.71/-3.91 | PM6 | 25.4 | 0.84 | 77.7 | 17.1 | [ |
TPT⁃IN | 727 | -5.80/-3.97 | PBT1⁃C | 13.92 | 0.88 | 72.9 | 8.91 | [ |
SeTP⁃IN | 741 | -5.77/-4.00 | PBT1⁃C | 16.37 | 0.85 | 73.3 | 10.20 | [ |
BS3TSe⁃4F | 851 | -5.60/-3.86 | D18 | 29.40 | 0.83 | 75.9 | 18.48 | [ |
SN | 862 | -5.51/-3.82 | PM6 | 25.14 | 0.82 | 68.9 | 14.30 | [ |
Table 1 Optical and electronic properties, and photovoltaics performance of FREAs
Acceptor | λ | EHOMO/ELUMO(eV) | Donor | JSC/(mA·cm-2) | VOC/V | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
ITIC | 703 | -5.71/-3.97 | PBT1⁃C | 14.9 | 0.97 | 69.3 | 10.0 | [ |
TPTT⁃IC | 692 | -5.78/-3.95 | PBT1⁃C | 15.5 | 0.96 | 69.4 | 10.3 | [ |
MeIC1 | 714 | -5.59/-5.39 | PBDB⁃T | 18.32 | 0.93 | 74.1 | 12.58 | [ |
TPT⁃2F | 698 | -5.84/-4.06 | PBT1⁃C | 13.89 | 0.87 | 68.6 | 8.33 | [ |
TPTT⁃2F | 717 | -5.75/-4.04 | PBT1⁃C | 15.82 | 0.88 | 73.2 | 10.17 | [ |
TPTTT⁃2F | 724 | -5.69/-4.01 | PBT1⁃C | 17.63 | 0.92 | 74.5 | 12.03 | [ |
F5IC | 694 | -5.82/-4.05 | PTB7⁃Th | 13.43 | 0.64 | 62.1 | 5.31 | [ |
AOIC | 811 | -5.50/-3.93 | PTB7⁃Th | 24.32 | 0.74 | 74.3 | 13.3 | [ |
IUIC2 | 865 | -5.32/-3.86 | PTB7⁃Th | 10.77 | 0.76 | 51.5 | 4.06 | [ |
IDT6CN⁃M | 693 | -5.62/-3.90 | PBDB⁃T | 15.97 | 0.92 | 76.1 | 11.23 | [ |
IDT8CN⁃M | 699 | -5.54/-3.91 | PBDB⁃T | 17.11 | 0.92 | 78.9 | 12.43 | [ |
ABP4T⁃4F | 782 | -5.65/-3.85 | PM6 | 21.2 | 0.92 | 75.1 | 15.2 | [ |
BP5T⁃4F | 813 | -5.63/-3.88 | PM6 | 23.8 | 0.89 | 76.3 | 16.9 | [ |
BP4T⁃4F | 826 | -5.71/-3.91 | PM6 | 25.4 | 0.84 | 77.7 | 17.1 | [ |
TPT⁃IN | 727 | -5.80/-3.97 | PBT1⁃C | 13.92 | 0.88 | 72.9 | 8.91 | [ |
SeTP⁃IN | 741 | -5.77/-4.00 | PBT1⁃C | 16.37 | 0.85 | 73.3 | 10.20 | [ |
BS3TSe⁃4F | 851 | -5.60/-3.86 | D18 | 29.40 | 0.83 | 75.9 | 18.48 | [ |
SN | 862 | -5.51/-3.82 | PM6 | 25.14 | 0.82 | 68.9 | 14.30 | [ |
Fig.4 2D grazing⁃incidence wide⁃angle X⁃ray scattering(GIWAXS) patterns(A) and corresponding out⁃of⁃plane and in⁃plane GIWAXS cutline profiles of PTB7⁃Th∶F5IC, PTB7⁃Th∶AOIC, and PTB7⁃Th∶IUIC2 blend films(B)[23], normalized absorption and electroluminescence(EL) spectra of BP4T⁃4F, BP5T⁃4F, and ABP4T⁃4F neat films(C), Eloss analysis of OSCs for PM6∶BP4T⁃4F, PM6∶BP5T⁃4F and PM6∶ABP4T⁃4F[blue line for measured external quantum efficiency(EQE), red line for Fourier transform photoelectron spectroscopy⁃EQE, green line for EL, and black line for EQE of OSCs](D)[25]
Acceptor | λmax/nm | EHOMO/ELUMO(eV) | Donor | JSC/(mA·cm-2) | VOC/V | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
ITIC⁃2Cl⁃β | 728 | -5.30/-3.71 | PM6 | 18.47 | 0.94 | 64.63 | 11.21 | [ |
α⁃ITIC⁃2Cl | 739 | -5.29/-3.77 | PM6 | 18.91 | 0.88 | 73.5 | 12.23 | [ |
TTPTTT⁃IC | 700 | -5.64/-3.87 | PBT1⁃C | 12.47 | 0.99 | 63.7 | 7.91 | [ |
TTPTTT⁃2F | 726 | -5.67/-4.04 | PBT1⁃C | 16.78 | 0.92 | 74.6 | 11.52 | [ |
TTPTTT⁃4F | 738 | -5.69/-4.12 | PBT1⁃C | 19.36 | 0.86 | 72.1 | 12.05 | [ |
α⁃IT⁃2F | 717 | -5.67/-4.07 | PBDB⁃T | 19.06 | 0.78 | 68.84 | 10.28 | [ |
α⁃IT⁃OM | 695 | -5.61/-3.92 | PBDB⁃T | 18.11 | 0.93 | 71.52 | 12.07 | [ |
SY1 | 825 | -5.68/-3.95 | PM6 | 25.41 | 0.871 | 76.00 | 16.83 | [ |
SY2 | 836 | -5.67/-3.99 | PM6 | 25.29 | 0.852 | 74.30 | 16.01 | [ |
SY3 | 838 | -5.69/-3.98 | PM6 | 25.54 | 0.858 | 74.10 | 16.23 | [ |
BO⁃4Cl | 840 | -5.68/-3.94 | PM6 | 26.03 | 0.841 | 79.4 | 17.43 | [ |
BO⁃5Cl | 778 | -5.62/-3.86 | PM6 | 22.57 | 0.958 | 70.1 | 15.02 | [ |
BO⁃5Cl∶BO⁃4Cl | 778 | -5.62/-3.86 | PM6 | 26.93 | 0.874 | 78.8 | 18.56 | [ |
BTP⁃2F⁃ThCl | 839 | -5.70/-3.99 | PM6 | 25.38 | 0.869 | 77.4 | 17.06 | [ |
BTP⁃S1 | 771 | -5.55/-4.01 | PM6 | 22.39 | 0.934 | 72.69 | 15.21 | [ |
BTP⁃S2 | 784 | -5.65/-4.01 | PM6 | 24.07 | 0.945 | 72.02 | 16.37 | [ |
Table 2 Optical and electronic properties, and photovoltaics performance of FREAs
Acceptor | λmax/nm | EHOMO/ELUMO(eV) | Donor | JSC/(mA·cm-2) | VOC/V | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
ITIC⁃2Cl⁃β | 728 | -5.30/-3.71 | PM6 | 18.47 | 0.94 | 64.63 | 11.21 | [ |
α⁃ITIC⁃2Cl | 739 | -5.29/-3.77 | PM6 | 18.91 | 0.88 | 73.5 | 12.23 | [ |
TTPTTT⁃IC | 700 | -5.64/-3.87 | PBT1⁃C | 12.47 | 0.99 | 63.7 | 7.91 | [ |
TTPTTT⁃2F | 726 | -5.67/-4.04 | PBT1⁃C | 16.78 | 0.92 | 74.6 | 11.52 | [ |
TTPTTT⁃4F | 738 | -5.69/-4.12 | PBT1⁃C | 19.36 | 0.86 | 72.1 | 12.05 | [ |
α⁃IT⁃2F | 717 | -5.67/-4.07 | PBDB⁃T | 19.06 | 0.78 | 68.84 | 10.28 | [ |
α⁃IT⁃OM | 695 | -5.61/-3.92 | PBDB⁃T | 18.11 | 0.93 | 71.52 | 12.07 | [ |
SY1 | 825 | -5.68/-3.95 | PM6 | 25.41 | 0.871 | 76.00 | 16.83 | [ |
SY2 | 836 | -5.67/-3.99 | PM6 | 25.29 | 0.852 | 74.30 | 16.01 | [ |
SY3 | 838 | -5.69/-3.98 | PM6 | 25.54 | 0.858 | 74.10 | 16.23 | [ |
BO⁃4Cl | 840 | -5.68/-3.94 | PM6 | 26.03 | 0.841 | 79.4 | 17.43 | [ |
BO⁃5Cl | 778 | -5.62/-3.86 | PM6 | 22.57 | 0.958 | 70.1 | 15.02 | [ |
BO⁃5Cl∶BO⁃4Cl | 778 | -5.62/-3.86 | PM6 | 26.93 | 0.874 | 78.8 | 18.56 | [ |
BTP⁃2F⁃ThCl | 839 | -5.70/-3.99 | PM6 | 25.38 | 0.869 | 77.4 | 17.06 | [ |
BTP⁃S1 | 771 | -5.55/-4.01 | PM6 | 22.39 | 0.934 | 72.69 | 15.21 | [ |
BTP⁃S2 | 784 | -5.65/-4.01 | PM6 | 24.07 | 0.945 | 72.02 | 16.37 | [ |
Fig.6 Crystal packing diagrams for ITIC⁃2Cl⁃β(up), and a⁃ITIC⁃2Cl(down)(A)[29], electroluminescence external quantum efficiency of OSCs based on PM6∶Y6, PM6∶BTP⁃S1, and PM6∶BTP⁃S2 blends at various injected currents(B)[34], transient absorption dynamic curves of the PM6∶BO⁃4Cl, PM6∶BO⁃5Cl and PM6∶BO⁃4Cl∶BO⁃5Cl blends(C), relation graph of photoluminescence lifetimes, diffusion lifetimes, hole transfer rates, and HOMO offsets(the error bars defined as errors originated from the instrument and data fitting)(D), schematic of the behaviors of exciton and charge carriers(E)[19](A) Copyright 2019, American Chemical Society; (B) Copyright 2020, Wiley-VCH; (C—E) Copyright 2022, Springer Nature.
Fig.8 Atomic force microscopy images(A) and transmission electron microscope images of PBDB⁃T∶IDT⁃2O film(left), PBDB⁃T∶IDT⁃OB film(mid), and PBDB⁃T∶IDT⁃2B film(right)(B)[36], diagram of torsion for T⁃O⁃IC and T⁃C⁃IC and relaxed potential energy scan results of T⁃O⁃IC and T⁃C⁃IC(36 steps of size 10 degrees)(C)[39], molecular packing along the c⁃axis in AYT11Se9⁃Cl and AYT9Se11⁃Cl single⁃crystals(N⁃alkyl chains and H atoms hidden for clarity)(D)[40], dielectric constant versus frequency of single⁃component devices of Y6 and Y6⁃4O(E)[42]
Acceptor | λmax/nm | EHOMO/ELUMO(eV) | Donor | JSC/(mA·cm-2) | VOC/V | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
IDT⁃OB | 697 | -5.77/-3.87 | PBDB⁃T | 16.2 | 0.88 | 71.1 | 10.12 | [ |
EH⁃HD⁃4F | 813 | -5.69/-4.04 | PM6 | 27.5 | 0.84 | 79.3 | 18.38 | [ |
Bu⁃OD⁃4F | 801 | -5.68/-4.01 | PM6 | 26.2 | 0.85 | 76.6 | 17.10 | [ |
BTP⁃PhC6 | 805 | -5.74/-4.00 | PM1 | 25.3 | 0.884 | 77.86 | 17.43 | [ |
BTP⁃PhC6⁃C11 | 815 | -5.74/-4.01 | PM1 | 26.62 | 0.871 | 79.05 | 18.33 | [ |
Y6⁃1O | 798 | -5.71/-3.84 | PM6 | 23.2 | 0.89 | 78.3 | 16.1 | [ |
Y6⁃2O | 807 | -5.73/-3.76 | PM6 | 13.3 | 0.92 | 53.5 | 6.6 | [ |
AYT11Se9⁃Cl | 846 | -5.69/-3.89 | PM6 | 26.86 | 0.84 | 77.5 | 17.52 | [ |
AYT9Se11⁃Cl | 846 | -5.68/-3.88 | PM6 | 27.40 | 0.84 | 78.4 | 18.12 | [ |
BTP⁃eC9∶EH⁃C8F17 | 804 | -5.63/-3.85 | PM6 | 27.3 | 0.836 | 79.2 | 18.03 | [ |
Y6⁃4O | 830 | -5.64/-4.01 | PM6 | 26.1 | 0.85 | 67.2 | 14.9 | [ |
Table 3 Optical and electronic properties, and photovoltaics performance of FREAs
Acceptor | λmax/nm | EHOMO/ELUMO(eV) | Donor | JSC/(mA·cm-2) | VOC/V | FF(%) | PCE(%) | Ref. |
---|---|---|---|---|---|---|---|---|
IDT⁃OB | 697 | -5.77/-3.87 | PBDB⁃T | 16.2 | 0.88 | 71.1 | 10.12 | [ |
EH⁃HD⁃4F | 813 | -5.69/-4.04 | PM6 | 27.5 | 0.84 | 79.3 | 18.38 | [ |
Bu⁃OD⁃4F | 801 | -5.68/-4.01 | PM6 | 26.2 | 0.85 | 76.6 | 17.10 | [ |
BTP⁃PhC6 | 805 | -5.74/-4.00 | PM1 | 25.3 | 0.884 | 77.86 | 17.43 | [ |
BTP⁃PhC6⁃C11 | 815 | -5.74/-4.01 | PM1 | 26.62 | 0.871 | 79.05 | 18.33 | [ |
Y6⁃1O | 798 | -5.71/-3.84 | PM6 | 23.2 | 0.89 | 78.3 | 16.1 | [ |
Y6⁃2O | 807 | -5.73/-3.76 | PM6 | 13.3 | 0.92 | 53.5 | 6.6 | [ |
AYT11Se9⁃Cl | 846 | -5.69/-3.89 | PM6 | 26.86 | 0.84 | 77.5 | 17.52 | [ |
AYT9Se11⁃Cl | 846 | -5.68/-3.88 | PM6 | 27.40 | 0.84 | 78.4 | 18.12 | [ |
BTP⁃eC9∶EH⁃C8F17 | 804 | -5.63/-3.85 | PM6 | 27.3 | 0.836 | 79.2 | 18.03 | [ |
Y6⁃4O | 830 | -5.64/-4.01 | PM6 | 26.1 | 0.85 | 67.2 | 14.9 | [ |
1 | Yan C., Barlow S., Wang Z., Yan H., Jen A. K. Y., Marder S. R., Zhan X., Nat. Rev. Mater., 2018, 3(3), 18003 |
2 | Wang J., Xue P., Jiang Y., Huo Y., Zhan X., Nat. Rev. Chem., 2022, 6(9), 614—634 |
3 | Hou J., Inganas O., Friend R. H., Gao F., Nat. Mater., 2018, 17(2), 119—128 |
4 | Lin Y., Zhan X., Acc. Chem. Res., 2016, 49(2), 175—183 |
5 | Li T., Zhan X., Acta Chim. Sin., 2021, 79(3), 257—283 |
6 | Zhang G., Lin F. R., Qi F., Heumuller T., Distler A., Egelhaaf H. J., Li N., Chow P. C. Y., Brabec C. J., Jen A. K., Yip H. L., Chem. Rev., 2022, 122(18), 14180—14274 |
7 | Yu G., Gao J., Hummelen J. C., Wudl F., Heeger A. J., Science, 1995, 270(5243), 1789—1791 |
8 | Zhao F., Wang C., Zhan X., Adv. Energy Mater., 2018, 8(28), 1703147 |
9 | Lu L., Zheng T., Wu Q., Schneider A. M., Zhao D., Yu L., Chem. Rev., 2015, 115(23), 12666—12731 |
10 | He Y., Li Y., Phys. Chem. Chem. Phys., 2011, 13(6), 1970—1983 |
11 | Cheng P., Li G., Zhan X., Yang Y., Nat. Photonics, 2018, 12(3), 131—142 |
12 | Zhang G., Zhao J., Chow P. C. Y., Jiang K., Zhang J., Zhu Z., Zhang J., Huang F., Yan H., Chem. Rev., 2018, 118(7), 3447—3507 |
13 | Lin Y., Wang J., Zhang Z. G., Bai H., Li Y., Zhu D., Zhan X., Adv. Mater., 2015, 27(7), 1170—1174 |
14 | Yuan J., Zhang Y., Zhou L., Zhang G., Yip H. L., Lau T. K., Lu X., Zhu C., Peng H., Johnson P. A., Leclerc M., Cao Y., Ulanski J., Li Y., Zou Y., Joule, 2019, 3(4), 1140—1151 |
15 | Zhu L., Zhang M., Xu J., Li C., Yan J., Zhou G., Zhong W., Hao T., Song J., Xue X., Zhou Z., Zeng R., Zhu H., Chen C. C., MacKenzie R. C. I., Zou Y., Nelson J., Zhang Y., Sun Y., Liu F., Nat. Mater., 2022, 21(6), 656—663 |
16 | Li C., Zhou J., Song J., Xu J., Zhang H., Zhang X., Guo J., Zhu L., Wei D., Han G., Min J., Zhang Y., Xie Z., Yi Y., Yan H., Gao F., Liu F., Sun Y., Nat. Energy, 2021, 6(6), 605—613 |
17 | Li C., Fu H., Xia T., Sun Y., Adv. Energy Mater., 2019, 9(25), 1900999 |
18 | Un Kim Y., Eun Park G., Choi S., Hee Lee D., Ju Cho M., Choi D. H., J. Mater. Chem. C, 2017, 5(29), 7182—7190 |
19 | He C., Chen Z., Wang T., Shen Z., Li Y., Zhou J., Yu J., Fang H., Li Y., Li S., Lu X., Ma W., Gao F., Xie Z., Coropceanu V., Zhu H., Bredas J. L., Zuo L., Chen H., Nat. Commun., 2022, 13(1), 2598 |
20 | Li C., Xie Y., Fan B., Han G., Yi Y., Sun Y., J. Mater. Chem. C, 2018, 6(18), 4873—4877 |
21 | Gao W., An Q., Zhong C., Luo Z., Ming R., Zhang M., Zou Y., Liu F., Zhang F., Yang C., Chem. Sci., 2018, 9(42), 8142—8149 |
22 | Song J., Li C., Ye L., Koh C., Cai Y., Wei D., Woo H. Y., Sun Y., J. Mater. Chem. A, 2018, 6(39), 18847—18852 |
23 | Jia B., Wang J., Wu Y., Zhang M., Jiang Y., Tang Z., Russell T. P., Zhan X., J. Am. Chem. Soc., 2019, 141(48), 19023—19031 |
24 | Gao W., Liu T., Zhong C., Zhang G., Zhang Y., Ming R., Zhang L., Xin J., Wu K., Guo Y., Ma W., Yan H., Liu Y., Yang C., ACS Energy Lett., 2018, 3(7), 1760—1768 |
25 | Gao W., Fu H., Li Y., Lin F., Sun R., Wu Z., Wu X., Zhong C., Min J., Luo J., Woo H. Y., Zhu Z., Jen A. K. Y., Adv. Energy Mater., 2020, 11(4), 2003177 |
26 | Li C., Song J., Cai Y., Han G., Zheng W., Yi Y., Ryu H. S., Woo H. Y., Sun Y., J. Energy Chem., 2020, 40, 144—150 |
27 | Gao W., Qi F., Peng Z., Lin F. R., Jiang K., Zhong C., Kaminsky W., Guan Z., Lee C. S., Marks T. J., Ade H., Jen A. K., Adv. Mater., 2022, 34(32), e2202089 |
28 | Liu W., Sun S., Zhou L., Cui Y., Zhang W., Hou J., Liu F., Xu S., Zhu X., Angew. Chem. Int. Ed. Engl., 2022, 61(19), e202116111 |
29 | Lai H., Chen H., Zhou J., Qu J., Wang M., Xie W., Xie Z., He F., J. Phys. Chem. Lett., 2019, 10(16), 4737—4743 |
30 | Li C., Song J., Ye L., Koh C., Weng K., Fu H., Cai Y., Xie Y., Wei D., Woo H. Y., Sun Y., Sol. RRL, 2019, 3(1), 1800246 |
31 | Li M., Zhou Y., Zhang J., Song J., Bo Z., J. Mater. Chem. A, 2019, 7(15), 8889—8896 |
32 | Liu T., Zhang Y., Shao Y., Ma R., Luo Z., Xiao Y., Yang T., Lu X., Yuan Z., Yan H., Chen Y., Li Y., Adv. Funct. Mater., 2020, 30(24), 2000456 |
33 | Luo Z., Ma R., Liu T., Yu J., Xiao Y., Sun R., Xie G., Yuan J., Chen Y., Chen K., Chai G., Sun H., Min J., Zhang J., Zou Y., Yang C., Lu X., Gao F., Yan H., Joule, 2020, 4(6), 1236—1247 |
34 | Li S., Zhan L., Jin Y., Zhou G., Lau T. K., Qin R., Shi M., Li C. Z., Zhu H., Lu X., Zhang F., Chen H., Adv. Mater., 2020, 32(24), e2001160 |
35 | Li D., Sun C., Yan T., Yuan J., Zou Y., ACS Cent. Sci., 2021, 7(11), 1787—1797 |
36 | Feng S., Zhang C., Liu Y., Bi Z., Zhang Z., Xu X., Ma W., Bo Z., Adv. Mater., 2017, 29(42), 1703527 |
37 | Chen S., Feng L., Jia T., Jing J., Hu Z., Zhang K., Huang F., Sci. China: Chem., 2021, 64(7), 1192—1199 |
38 | Luo Z., Gao Y., Lai H., Li Y., Wu Z., Chen Z., Sun R., Ren J., Zhang C. E., He F., Woo H., Min J., Yang C., Energy Environ. Sci., 2022, 15(11), 4601—4611 |
39 | Chen Y., Bai F., Peng Z., Zhu L., Zhang J., Zou X., Qin Y., Kim H. K., Yuan J., Ma L. K., Zhang J., Yu H., Chow P. C. Y., Huang F., Zou Y., Ade H., Liu F., Yan H., Adv. Energy Mater., 2020, 11(3), 2003141 |
40 | Zhao X., An Q., Zhang H., Yang C., Mahmood A., Jiang M., Jee M. H., Fu B., Tian S., Woo H. Y., Wang Y., Wang J. L., Angew. Chem. Int. Ed. Engl., 2023, 62(10), e202216340 |
41 | Chen S., Hong L., Dong M., Deng W., Shao L., Bai Y., Zhang K., Liu C., Wu H., Huang F., Angew. Chem. Int. Ed. Engl., 2023, 62(1), e202213869 |
42 | Li T., Wang K., Cai G., Li Y., Liu H., Jia Y., Zhang Z., Lu X., Yang Y., Lin Y., JACS Au, 2021, 1(10), 1733—1742 |
[1] | 时宇, 张榴, 国霞, 王阳, 肖海芹, 房进, 周祎, 张茂杰. 聚合物添加剂作为形貌调节剂提升全小分子有机太阳能电池的效率和稳定性[J]. 高等学校化学学报, 2023, 44(7): 20230047. |
[2] | 赵明新, 姚志刚, 刘中原, 徐文婧, 马晓玲, 张福俊. 逐层沉积型有机太阳能电池的研究进展[J]. 高等学校化学学报, 2023, 44(7): 20230120. |
[3] | 韦晚霞, 周先敏, 董馨韵, 刘铁峰, 谢聪, 程靖宇, 陈建平, 陆鑫, 冯凯, 周印华. 交联PEDOT∶F空穴传输层提升柔性有机光伏电池性能的研究[J]. 高等学校化学学报, 2023, 44(7): 20230069. |
[4] | 张亿, 单通, 王焱, 钟洪亮. 以锗为桥接原子的受体材料及其在有机太阳能电池中的应用[J]. 高等学校化学学报, 2023, 44(7): 20230050. |
[5] | 何韦, 陈飞, 李鸿祥, 王嘉宇, 秦家强, 崔宁博, 严岑琪, 程沛. 基于三氟苯甲酸自组装阳极界面层的高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230161. |
[6] | 郭赟彤, 陈振宇, 葛子义. 不同卤化端基的非富勒烯受体对有机太阳能电池的影响[J]. 高等学校化学学报, 2023, 44(7): 20230084. |
[7] | 张永倩, 朱小玉, 苗俊辉, 刘俊, 王利祥. 烷基链支化位点对全稠环小分子受体聚集的影响[J]. 高等学校化学学报, 2023, 44(7): 20230068. |
[8] | 张有辉, 杨娜, 段娜, 程毓君, 游诗勇, 吴飞燕, 谌烈. 端基修饰聚合物给体制备高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230169. |
[9] | 方海盛, 梁世洁, 肖承义, 夏冬冬, 李韦伟. 基于刚性连接单元的双缆共轭高分子材料的合成及在单组分有机太阳能电池中的应用[J]. 高等学校化学学报, 2023, 44(7): 20230146. |
[10] | 陈海阳, 李欣琪, 丁俊源, 黄雨婷, 李耀文. 客体增塑剂调控非卤溶剂中聚合物给体预聚集行为制备高性能有机太阳能电池[J]. 高等学校化学学报, 2023, 44(7): 20230128. |
[11] | 宋美宁, 郝海景, 陈卫平, 顾芳, 巴信武. 以三聚茚为核的星型电子受体材料的合成、 表征与光伏性能[J]. 高等学校化学学报, 2019, 40(7): 1527. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||