高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (7): 20230084.doi: 10.7503/cjcu20230084

• 研究论文 • 上一篇    下一篇

不同卤化端基的非富勒烯受体对有机太阳能电池的影响

郭赟彤1,2, 陈振宇1,2, 葛子义1,2()   

  1. 1.能源光电子材料与器件浙江省工程研究中心, 2. 中国科学院宁波材料技术与工程研究所, 宁波 315201
    3.中国科学院大学, 北京 101408
  • 收稿日期:2023-02-27 出版日期:2023-07-10 发布日期:2023-03-21
  • 通讯作者: 葛子义 E-mail:geziyi@nimte.ac.cn
  • 作者简介:第一联系人:共同第一作者.
  • 基金资助:
    国家杰出青年科学基金(21925506)

Effects of Different Halogenated End-groups Non-fullerene Acceptors on the Organic Solar Cells

GUO Yuntong1,2, CHEN Zhenyu1,2, GE Ziyi1,2()   

  1. 1.Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices
    2.Ningbo Institute of Materials Technology & Engineering,Chinese Academy of Sciences,Ningbo 315201,China
    3.University of Chinese Academy of Sciences,Beijing 101408,China
  • Received:2023-02-27 Online:2023-07-10 Published:2023-03-21
  • Contact: GE Ziyi E-mail:geziyi@nimte.ac.cn
  • Supported by:
    the National Science Fund for Distinguished Young Scholars, China(21925506)

摘要:

非富勒烯受体(NFAs)的端基卤化是制备高性能NFAs有机太阳能电池(OSCs)的有效方法. 本文合成了 3种NFAs(BTP-SSe-F, BTP-SSe-Cl和BTP-SSe-Br), 其具有不同的卤化端基, 分别为IC-2F, IC-2Cl和IC-2Br.对 3种NFAs的光物理性能、 电化学性质、 有机光伏性能和活性层形貌等进行测试分析发现, 氟化NFAs比氯化和溴化NFAs具有更低的能级. 3种NFAs的紫外-可见吸收光谱相比于常见的受体材料都出现了红移, 而且BTP-SSe-F具有更强的分子间作用力. BTP-SSe-F具有更优异并且平衡的电子和空穴迁移率. 与BTP-SSe-Cl和BTP-SSe-Br相比, BTP-SSe-F共混膜具有更合适的粗糙度、 更好的相分离尺寸和更强的π-π堆积作用. 当聚 [(2,6-(4,8-双(5-(2-乙基己基-3-氟)噻吩-2-基)-苯并[1,2-B:4,5-B']二噻吩])-ALT-(5,5-(1',3'-二-2-噻吩-5',7'-双(2-乙基己基)苯并[1',2'-C:4',5'-C']二噻吩-4,8-二酮)(PM6)作为给体材料, 基于BTP-SSe-F的光电器件表现出最高的功率转换效率(PCE=16.5%), 具有最高的电流密度(JSC=28.17 mA·cm-2)和填充因子(FF=74.11%). 研究结果表明, 不同卤化端基的NFAs对OSCs的光电性能有较大影响, 其中端基的氟化可以有效构建高性能光伏材料.

关键词: 有机太阳能电池, 卤化, 端基工程, 非富勒烯受体

Abstract:

The end-group halogenation of non-fullerene acceptors(NFAs) is an effective method to fabricate high- performance NFAs organic solar cells(OSCs). Here in, three NFAs, BTP-SSe-F, BTP-SSe-Cl and BTP-SSe-Br, were synthesized. They had different halogenated end groups, IC-2F, IC-2Cl and IC-2Br, respectively. The photophysical properties, electrochemical properties, organic photovoltaic properties and active layer morphology of the three NFAs were tested and analyzed. It was found that fluorinated NFAs had lower energy levels than chlorinated and brominated NFAs. The UV-visible absorption spectra of the three NFAs all showed red-shifting, and the intermolecular force of BTP-SSe-F was stronger. BTP-SSe-F had better electron and hole mobility and more balanced electron and hole mobility. Compared with BTP-SSe-Cl and BTP-SSe-Br, BTP-SSe-F blends had more suitable roughness, better phase separation size and stronger π⁃π packing. When PM6 was used as the donor material, the BTP-SSe-F based optoelectronic devices exhibited the highest power conversion efficiency(PCE=16.53%), the highest current density(JSC=28.17 mA/cm2) and the highest filling factor(FF=74.11%). These results indicate that different halogenated end-group NFAs have great influence on the photoelectric performance of OSCs, and the fluorination of end-group can be very effective in constructing high-performance photovoltaic materials.

Key words: Organic solar cell, Halogenation, Engineering of end-group, Non-fullerene acceptor

中图分类号: 

TrendMD: