高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (6): 20230028.doi: 10.7503/cjcu20230028

• 物理化学 • 上一篇    下一篇

TiO2提高富碳氮化碳的光生电荷存储性能

王锡慧, 唐笑(), 刘婷婷, 李艳虹, 荆川, 凌发令, 刘俊, 周贤菊, 姚璐, 周衡, 张家忠   

  1. 重庆邮电大学理学院, 重庆 400065
  • 收稿日期:2023-01-20 出版日期:2023-06-10 发布日期:2023-03-21
  • 通讯作者: 唐笑 E-mail:tangxiao@cqupt.edu.cn
  • 基金资助:
    重庆市教育委员会科学技术研究项目(重点项目)(KJZD-K202200605);国家自然科学基金(12004061);重庆市教育委员会科学技术研究项目(KJQN202000629);重庆市自然科学基金(cstc2021jcyj-msxmX0024);重庆市教育委员会科学技术研究项目(重大项目)(KJZD-M202000601)

Photocharging Storage Capacity of C-rich Polymeric Carbon Nitrides Enhanced by TiO2

WANG Xihui, TANG Xiao(), LIU Tingting, LI Yanhong, JING Chuan, LING Faling, LIU Jun, ZHOU Xianju, YAO Lu, ZHOU Heng, ZHANG Jiazhong   

  1. School of Science,Chongqing University of Posts and Telecommunications,Chongqing 400065,China
  • Received:2023-01-20 Online:2023-06-10 Published:2023-03-21
  • Contact: TANG Xiao E-mail:tangxiao@cqupt.edu.cn
  • Supported by:
    the Science and Technology Research Program of Chongqing Municipal Education Commission, China(KJZD-K202200605);the National Natural Science Foundation of China(12004061);the Science and Technology Research Program of Chongqing Municipal Education Commission, China(KJQN202000629);the Natural Science Foundation of Chongqing, China(cstc2021jcyj-msxmX0024);the Science and Technology Research Program of Chongqing Municipal Education Commission, China(KJZD-M202000601)

摘要:

氮化碳材料固有的导电性差、 电子迁移率低等问题导致高光生电荷复合率, 阻碍了其光生电荷存储性能的提高. 为此, 构建了TiO2富碳氮化碳共轭聚合物(CPCN)界面异质结, 以提高光生电荷分离率. 采用具有高比表面积(220.03 m2/g)的TiO2纳米晶介孔薄膜作为电子传输物质, 通过增大TiO2与CPCN之间的界面面积提高了电极反应活性, 促进了光生空穴的高效抽取, 获得了197 C/g的光生电荷存储容量.

关键词: 富碳氮化碳, 二氧化钛, 太阳能电池, 可光充电电极, 聚合物半导体

Abstract:

The light-induced accumulation of long-lived trapped electrons within the conjugated heptazine backbone enables polymeric carbon nitrides the dual ability of light absorption and charge storage. However, the photocharge storage capacity of C-rich polymeric carbon nitride(CPCN) has still been plagued by the severe recombination of photogenerated electrons and holes, which causes by its poor conductivity and low electron mobility. Herein, in order to enhance the photocharge separation, TiO2 was used to build an interfacial heterojunction with CPCN. Serving as the electron transporter, the used TiO2 nanocrystalline mesoporous film has high specific surface area of 220.03 m2/g. The electrode reaction activity is significantly improved by increasing the interface area between TiO2 and CPCN. Owing to the desirable hole-extraction route for the CPCN photo-rechargeable cell, a remarkable photo-charging capacity of 197 C/g is achieved. The photoelectrode is prepared by coating the CPCN material on top of TiO2 sintered on an fluorine-doped tin oxide(FTO) substrate. The counter electrode is a platinized FTO glass. The electrolyte, using I3-/I- (LiI and I2) in the solution of acetonitrile with a hint of water as the redox shuttle, is injected into the gap between the photoelectrode and the counter electrode to fabricate the cell. The microstructure and morphology of the TiO2 and CPCN materials are characterized by field emission scanning electron microscopy(FESEM), transmission electron microscopy(TEM), X-ray diffraction(XRD), Fourier infrared spectroscopy(FTIR), X-ray photoelectron spectroscopy(XPS) and nuclear magnetic resonance spectroscopy(NMR). The photoelectric and electrochemical properties of the TiO2, the CPCN as well as the TiO2/CPCN photoelectrodes are investigated using ultraviolet photoelectron spectroscopy(UPS), UV-Vis absorption spectrum, cyclic voltammetry(CV), galvanostatic charge- discharge(GCD) and electrochemical impedance spectroscopy(EIS).

Key words: C-Rich carbon nitride, Titania dioxide, Solar cell, Photo-rechargeable battery, Polymer semiconducting

中图分类号: 

TrendMD: