高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (5): 20220748.doi: 10.7503/cjcu20220748
贺汝涵1,2, 黎浩1, 韩方1,2, 陈奥渊, 麦立强1(), 周亮1(
)
收稿日期:
2022-12-06
出版日期:
2023-05-10
发布日期:
2023-03-08
通讯作者:
麦立强,周亮
E-mail:mlq518@whut.edu.cn;liangzhou@whut.edu.cn
基金资助:
HE Ruhan1,2, LI Hao1, HAN Fang1,2, CHEN Aoyuan, MAI Liqiang1(), ZHOU Liang1(
)
Received:
2022-12-06
Online:
2023-05-10
Published:
2023-03-08
Contact:
MAI Liqiang, ZHOU Liang
E-mail:mlq518@whut.edu.cn;liangzhou@whut.edu.cn
Supported by:
摘要:
Si基负极材料具有比容量高和嵌锂电势低等优点, 已成为提高锂离子电池能量密度的关键材料. 但其巨大的体积膨胀和与电解液间的副反应造成了严重的界面问题. 本文从硅负极界面的定义出发, 对界面问题、 成因和形成机制进行了综合评述; 并分别从结构优化、 人工界面构筑、 电解液配方优化和固态电池中的界面问题4个方面阐述了硅基负极界面工程的发展现状; 最后, 对硅基负极界面问题的解决方案进行了总结与展望.
中图分类号:
TrendMD:
贺汝涵, 黎浩, 韩方, 陈奥渊, 麦立强, 周亮. 锂离子电池硅基负极界面工程的研究进展. 高等学校化学学报, 2023, 44(5): 20220748.
HE Ruhan, LI Hao, HAN Fang, CHEN Aoyuan, MAI Liqiang, ZHOU Liang. Research Progresses on Interface Engineering of Si-Based Anodes for Lithium-ion Batteries. Chem. J. Chinese Universities, 2023, 44(5): 20220748.
Fig.1 Schematic illustration of hollow, yolk⁃shell, and porous Si⁃based structures for volume change accommodation(A)[38], schematic illustration of the fabrication process for SF@G and SEM image of the as⁃prepared SF@G(B)[42], schematic illustration of the watermelon⁃like Si/C microspheres(C)[43](A) Copyright 2021, Wiley-VCH GmbH; (B) Copyright 2020, the authors; (C) Copyright 2016, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fig.2 Schematic illustration for synthesizing core@double⁃shell⁃structured Si@SiO x @C and Si/C(A), EDS mappings of Si@SiO x @C(B), cycling performances of Si@SiO x @C and Si/C at 500 mA/g(C), rate performances of Si@SiO x @C and Si/C(D)[47](A)—(C) Copyright 2021, American Chemical Society.
Fig.3 Schematic fabrication process for DWSiNTs(A), capacity retention of different silicon nanostructures at C/5(B), SEI formation on silicon electrodes with different nanostructures(C)[58]SEM images of silicon nanowires at the initial stage(Ⅰ), after 200 cycles(Ⅱ) and after 2000 cycles(Ⅲ); SEM images of silicon nanotubes at the initial stage (Ⅳ), after 200 cycles(Ⅴ) and after 2000 cycles(Ⅵ); SEM images of DWSiNTs at the initial stage(Ⅶ), after 200 cycles(Ⅷ) and after 2000 cycles(Ⅸ). In these images, the SEI was selectively removed by chemical etching. Copyright 2012, Nature Publishing Group.
Fig.4 Schematic illustration of Si nanoparticle anodes with different coating materials during lithiation/delithiation: (i) carbon coating vs. (ii) SiOC coating(A), cycling performances at 1C(B)[61], schematic diagram of the mechanism of Si@SiC@C(C), cycling performance of Si@C, Si@SiC, and Si@SiC@C at a current density of 0.5 A/g(D)[62](A, B) Copyright 2014, American Chemical Society; (C, D) Copyright 2019, American Chemical Society.
Fig.5 Schematic illustration of fabrication process for the amorphous⁃TiO2⁃coated Si core⁃shell nanoparticles(I), FESEM(Ⅱ), TEM(Ⅲ, Ⅳ), and HRTEM(Ⅴ) images of Si@a⁃TiO2 nanoparticles(A), cycling performance of the pristine Si, Si@a⁃TiO2, and Si@c⁃TiO2 nanoparticle electrodes at a current density of 420 mA/g(B)[63], schematic illustration of the interfacial evolution process of nanostructured silicon⁃based anodes with and without covalently bonded SEI layer upon lithiation(C), cycle performance of Si@TiO2⁃TiSi2, Si@TiO2 and bare Si electrodes at 1 A/g(D)[64](A, B) Copyright 2017, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim; (C, D) Copyright 2021, Elsevier.
Fig.6 Schematic illustration of 3D porous SiNP/conductive polymer hydrogel composite electrodes(A), ATEM image showing the SiNPs(blue arrow) coated by a uniform PANi polymer layer(red arrow)(B)[72], schematic illustration of the synthetic procedure for Si@zincone/TiO2 and Si@titanicone/TiO2(C), TEM image of Si@titanicone/TiO2(D)[79](A, B) Copyright 2013, Nature Publishing Group; (C, D) Copyright 2021, Wiley-VCH GmbH.
Fig.7 Schematic of the SEI before and after 30 cycles, without the FEC(upper), with the FEC(lower)(A)[84], schematic of the SEI formed on binder⁃free silicon nanowire(SiNW) electrodes in pure FEC or VC electrolytes containing 1 mol/L LiPF6(B)[86](A) Copyright 2018, American Chemical Society; (B) Copyright 2019, American Chemical Society.
Fig.8 Schematic of the cycled alloy anode with an organic, low Eint and non⁃uniform Li alloy⁃SEI interface(A) and an inorganic, high Eint and uniform Li alloy⁃SEI interface(B), electron localized function and Eint for the Li alloy⁃LiF interfaces(C), distribution of the Li+ solvates for the LiPF6⁃mixTHF(2.0 mol/L) and LiPF6⁃EC⁃DMC(1.0 mol/L) electrolytes from MD simulations(D), typical charge/discharge profiles of a SiMP electrode cycled in 2.0 mol/L LiPF6⁃mixTHF(E), typical charge/discharge profiles of a SiMP electrode cycled in 1.0 mol/L LiPF6⁃EC⁃DMC(F), cycling stability and CEs of SiMPs cycled in 2.0 mol/L LiPF6⁃mixTHF and 1.0 mol/L LiPF6⁃EC⁃DMC electrolytes(G)[92]Copyright 2020, the Authors.
Fig.9 Influence of the baseline and OL(OTE⁃based LHCEs) on the degradation of Si anode(A), cycle life(B) and CEs of Si/graphite anodes (top) in half⁃cells(C), long⁃term cycling performance and CE of Si/graphite||NMC532 full cells with different electrolytes at 45 °C(D)[104]Copyright 2021, American Chemical Society.
Fig.10 Schematic of 99.9%(mass fraction) μSi electrode in an ASSB(all solid⁃state battery) full cell(A), voltage profiles of μSi||SSE||NCM811 cells with and without carbon additives(20%, mass fraction) inset a lower initial plateau indicating SSE(solid⁃state electrolyte) decomposition(B), pristine porous microstructure of μSi electrode(i), charged state with densified interconnected Li⁃Si structure(ii), discharged state with void formation between large dense Si particles(iii)(C), cycle life at room temperature(D)[108]Copyright 2021, the authors.
1 | Chae S., Ko M., Kim K., Ahn K., Cho J., Joule, 2017, 1, 47—60 |
2 | Wu H., Cui Y., Nano Today, 2012, 7, 414—429 |
3 | Choi J. W., Aurbach D., Nat. Rev. Mater., 2016, 1, 16013 |
4 | Zuo X., Zhu J., Müller⁃Buschbaum P., Cheng Y. J., Nano Energy, 2017, 31, 113—143 |
5 | Liu Z., Yu Q., Zhao Y., He R., Xu M., Feng S., Li S., Zhou L., Mai L., Chem. Soc. Rev., 2019, 48, 285—309 |
6 | Li H., Huang X., Chen L., Wu Z., Liang Y., Electrochem. Solid⁃State Lett., 1999, 2, 547 |
7 | Cui Y., Nat. Energy, 2021, 6, 995—996 |
8 | Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y., Nat. Nanotechnol., 2008, 3, 31—35 |
9 | McDowell M. T., Lee S. W., Nix W. D., Cui Y., Adv. Mater., 2013, 25, 4966—4985 |
10 | Tian H., Tan X., Xin F., Wang C., Han W., Nano Energy, 2015, 11, 490—499 |
11 | Liu Z., Guan D., Yu Q., Xu L., Zhuang Z., Zhu T., Zhao D., Zhou L., Mai L., Energy Storage Mater., 2018, 13, 112—118 |
12 | Liu Z., Zhao Y., He R., Luo W., Meng J., Yu Q., Zhao D., Zhou L., Mai L., Energy Storage Mater., 2019, 19, 299—305 |
13 | Shi Y., Zhou X., Yu G., Acc. Chem. Res., 2017, 50, 2642—2652 |
14 | Haregewoin A. M., Wotango A. S., Hwang B. J., Energy Environ. Sci., 2016, 9, 1955—1988 |
15 | Xu K., Chem. Rev., 2014, 114, 11503—11618 |
16 | Kim K., Ma H., Park S., Choi N. S., ACS Energy Lett., 2020, 5, 1537—1553 |
17 | Borodin O., Ren X., Vatamanu J., von Wald Cresce A., Knap J., Xu K., Acc. Chem. Res., 2017, 50, 2886—2894 |
18 | Ghassemi H., Au M., Chen N., Heiden P. A., Yassar R. S., ACS Nano, 2011, 5, 7805—7811 |
19 | Gu M., Parent L. R., Mehdi B. L., Unocic R. R., McDowell M. T., Sacci R. L., Xu W., Connell J. G., Xu P., Abellan P., Chen X., Zhang Y., Perea D. E., Evans J. E., Lauhon L. J., Zhang J. G., Liu J., Browning N. D., Cui Y., Arslan I., Wang C. M., Nano Lett., 2013, 13, 6106—6112 |
20 | Radvanyi E., Porcher W., Vito E. D., Montani A., Franger S., Jouanneau Si Larbi S., Phys. Chem. Chem. Phys., 2014, 16, 17142—17153 |
21 | Li H., Huang X., Chen L., Zhou G., Zhang Z., Yu D., Jun Mo Y., Pei N., Solid State Ionics, 2000, 135, 181—191 |
22 | Kasavajjula U., Wang C., Appleby A. J., J. Power Sources, 2007, 163, 1003—1039 |
23 | Liu J., Kopold P., van Aken P. A., van Aken J., Yu Y., Angew. Chem. Int. Ed., 2015, 54, 9632—9636 |
24 | Luo W., Chen X., Xia Y., Chen M., Wang L., Wang Q., Li W., Yang J., Adv. Energy Mater., 2017, 7, 1701083 |
25 | Wang H., Wang C., Tang Y., EcoMat, 2021, 3, e12172 |
26 | Liu X. H., Zhong L., Huang S., Mao S. X., Zhu T., Huang J. Y., ACS Nano, 2012, 6, 1522—1531 |
27 | Kim H., Seo M., Park M. H., Cho J., Angew. Chem. Int. Ed., 2010, 49, 2146—2149 |
28 | Chan C. K., Peng H., Liu G., McIlwrath K., Zhang X. F., Huggins R. A., Cui Y., Nat Nanotechnol., 2008, 3, 31—35 |
29 | Liu J., Li N., Goodman M. D., Zhang H. G., Epstein E. S., Huang B., Pan Z., Kim J., Choi J. H., Huang X., Liu J., Hsia K. J., Dillon S. J., Braun P. V., ACS Nano, 2015, 9, 1985—1994 |
30 | Ryu J., Hong D., Choi S., Park S., ACS Nano, 2016, 10, 2843—2851 |
31 | Liu J., Yang Y., Lyu P., Nachtigall P., Xu Y., Adv. Mater., 2018, 30, 1800838 |
32 | Hou G., Cheng B., Yang Y., Du Y., Zhang Y., Li B., He J., Zhou Y., Yi D., Zhao N., Bando Y., Golberg D., Yao J., Wang X., Yuan F., ACS Nano, 2019, 13, 10179—10190 |
33 | Fu R., Zhang K., Zaccaria R. P., Huang H., Xia Y., Liu Z., Nano Energy, 2017, 39, 546—553 |
34 | Chang J., Huang X., Zhou G., Cui S., Hallac P. B., Jiang J., Hurley P. T., Chen J., Adv. Mater., 2014, 26, 758—764 |
35 | Lee K. L., Jung J. Y., Lee S. W., Moon H. S., Park J. W., J. Power Sources, 2004, 129, 270—274 |
36 | Lee S. K., Oh S. M., Park E., Scrosati B., Hassoun J., Park M. S., Kim Y. J., Kim H., Belharouak I., Sun Y. K., Nano Lett., 2015, 15, 2863—2868 |
37 | Sung J., Ma J., Choi S. H., Hong J., Kim N., Chae S., Son Y., Kim S. Y., Cho J., Adv. Mater., 2019, 31, 1900970 |
38 | Zhang C., Wang F., Han J., Bai S., Tan J., Liu J., Li F., Small Structures, 2021, 2, 2100009 |
39 | Yao Y., McDowell M. T., Ryu I., Wu H., Liu N., Hu L., Nix W. D., Cui Y., Nano Lett., 2011, 11, 2949—2954 |
40 | Liu N., Hu L., McDowell M. T., Yao Y., Wang C., Cui Y., Nano Lett., 2012, 12, 3315—3321 |
41 | Di F., Wang N., Li L., Geng X., Yang H., Zhou W., Sun C., An B., J. Alloys Compd., 2021, 854, 157253 |
42 | Zhang X., Wang D., Qiu X., Ma Y., Kong D., Müllen K., Li X., Zhi L., Nat. Commun., 2020, 11, 3826 |
43 | Xu Q., Li J. Y., Sun J. K., Yin Y. X., Wan L. J., Guo Y. G., Adv. Energy Mater., 2017, 7, 1601481 |
44 | Shi J., Zu L., Gao H., Hu G., Zhang Q., Adv. Funct. Mater., 2020, 30, 2002980 |
45 | Liu N., Lu Z., Zhao J., McDowell M. T., Lee H. W., Zhao W., Cui Y., Nat. Nanotechnol., 2014, 9, 187—192 |
46 | Magasinski A., Dixon P., Hertzberg B., Kvit A., Ayala J., Yushin G., Nat. Mater., 2010, 9, 353—358 |
47 | Hu G., Yu R., Liu Z., Yu Q., Zhang Y., Chen Q., Wu J., Zhou L., Mai L., ACS Appl. Mater. Interfaces, 2021, 13, 3991—3998 |
48 | Zhou J., Lu Y., Yang L., Zhu W., Liu W., Yang Y., Liu K., Carbon Energy, 2022, 4, 399—410 |
49 | Luo W., Wang Y., Chou S., Xu Y., Li W., Kong B., Dou S. X., Liu H. K., Yang J., Nano Energy, 2016, 27, 255—264 |
50 | An W., He P., Che Z., Xiao C., Guo E., Pang C., He X., Ren J., Yuan G., Du N., Yang D., Peng D., Zhang Q., ACS Appl. Mater. Interfaces, 2022, 14, 10308—10318 |
51 | Li Y., Yan K., Lee H. W., Lu Z., Liu N., Cui Y., Nat. Energy, 2016, 1, 1—9 |
52 | Zhang X., Guo R., Li X., Zhi L., Small, 2018, 14, 1800752 |
53 | Chen F., Han J., Kong D., Yuan Y., Xiao J., Wu S., Tang D. M., Deng Y., Lv W., Lu J., Kang F., Yang Q. H., Nat. Sci. Rev., 2021, 8, nwab012 |
54 | Fukata N., Mitome M., Bando Y., Wu W., Wang Z. L., Nano Energy, 2016, 26, 37—42 |
55 | Han J., Jo S., Na I., Oh S. M., Jeon Y. M., Park J. G., Koo B., Hyun H., Seo S., Lee D., Kim H., Kim J., Lim J. C., Lim J., ACS Appl. Mater. Interfaces, 2021, 13, 52202—52214 |
56 | Miyachi M., Yamamoto H., Kawai H., J. Electrochem. Soc., 2007, 154, A376 |
57 | Jeong G., Kim Y. U., Krachkovskiy S. A., Lee C. K., Chem. Mater., 2010, 22, 5570—5579 |
58 | Wu H., Chan G., Choi J. W., Ryn I., Yao Y., McDowell M. T., Lee S. W., Jackson A., Yang Y., Hu L., Cui Y., Nat. Nanotechnol., 2012, 7, 310—315 |
59 | Park E., Yoo H., Lee J., Park M. S., Kim Y. J., Kim H., ACS Nano, 2015, 9, 7690—7696 |
60 | Im J., Kwon J. D., Kim D. H., Yoon S., Cho K. Y., Small Methods, 2022, 6, 2101052 |
61 | Choi S., Jung D. S., Choi J. W., Nano Lett., 2014, 14, 7120—7125 |
62 | Yu C., Chen X., Xiao Z., Lei C., Zhang C., Lin X., Shen B., Zhang R., Wei F., Nano Lett., 2019, 19, 5124—5132 |
63 | Yang J., Wang Y., Li W., Wang L., Fan Y., Jiang W., Luo W., Wang Y., Kong B., Selomulya C., Liu H. K., Dou S. K., Zhao D., Adv. Mater., 2017, 29, 1700523 |
64 | Yan Y., He Y. S., Zhao X., Zhao W., Ma Z. F., Yang X., Nano Energy, 2021, 84, 105935 |
65 | Lu B., Ma B., Deng X., Wu B., Wu Z., Luo J., Wang X., Chen G., Chem. Eng. J., 2018, 351, 269—279 |
66 | He Y., Yu X., Wang Y., Li H., Huang X., Adv. Mater., 2011, 23, 4938—4941 |
67 | Ai Q., Li D., Guo J., Hou G., Sun Q., Sun Q., Xu X., Zhai W., Zhang L., Feng J., Si P., Lou J., Ci L., Adv. Mater. Interfaces, 2019, 6, 1901187 |
68 | Chen C. J., Mori T., Jena A., Lin H. Y., Yang N. H., Wu N. L., Chang H., Hu S. F., Liu R. S., ChemistrySelect, 2018, 3, 729—735 |
69 | Jiang M., Yu Y., Fan H., Xu H., Zheng Y., Huang Y., Li S., Li J., ACS Appl. Mater. Interfaces, 2019, 11, 15656—15661 |
70 | Chen X., Ge G., Wang W., Zhang B., Jiang J., Yang X., Li Y., Wang L., He X., Sun Y., Sci. China: Chem., 2021, 64, 1417—1425 |
71 | Chen Z., Soltani A., Chen Y., Zhang Q., Davoodi A., Hosseinpour S., Peukert W., Liu W., Adv. Energy Mater., 2022, 12, 2200924 |
72 | Wu H., Yu G., Pan L., Liu N., McDowell M. T., Bao Z., Cui Y., Nat. Commun., 2013, 4, 1—6 |
73 | Gao Y., Yi R., Li Y. C., Song J., Chen S., Huang Q., Mallouk T. E., Wang D., J. Am. Chem. Soc., 2017, 139, 17359—17367 |
74 | Piper D. M., Travis J. J., Young M., Son S. B., Kim S. C., Oh K. H., George S. M., Ban C., Lee S. H., Adv. Mater., 2014, 26, 1596—1601 |
75 | Ai Q., Fang Q., Liang J., Xu X., Zhai T., Gao G., Guo H., Han G., Ci L., Lou J., Nano Energy, 2020, 72, 104657 |
76 | Liu X., Xu Z., Iqbal A., Chen M., Ali N., Low C., Qi R., Zai J., Qian X., Nano⁃Micro Lett., 2021, 13, 1—12 |
77 | Kwon Y. H., Minnici K., Park J. J., Lee S. R., Zhang G., Takeuchi E. S., Takeuchi K. J., Marschilok A. C., Reichmanis E., J. Am. Chem. Soc., 2018, 140, 5666—5669 |
78 | Mu T., Zhao Y., Zhao C., Holmes N. G., Lou S., Li J., Li W., He M., Sun Y., Du C., Adv. Funct. Mater., 2021, 31, 2010526 |
79 | Fang J. B., Cao Y. Q., Chang S. Z., Teng F. R., Wu D., Li A. D., Adv. Funct. Mater., 2022, 32, 2109682 |
80 | Li G., Huang L. B., Yan M. Y., Li J. Y., Jiang K. C., Yin Y. X., Xin S., Xu Q., Guo Y. G., Nano Energy, 2020, 74, 104890 |
81 | Chen Z., Soltani A., Chen Y., Zhang Q., Davoodi A., Hosseinpour S., Peukert W., Liu W., Adv. Energy Mater., 2022, 12, 2200924 |
82 | Yan Z., Liu J., Lin Y., Deng Z., He X., Ren J., He P., Pang C., Xiao C., Yang D., Electrochim. Acta, 2021, 390, 138814 |
83 | Zhang W., Cai T. H., Sheldon B. W., Adv. Energy Mater., 2019, 9, 1803066 |
84 | Li Q., Liu X., Han X., Xiang Y., Zhong G., Wang J., Zheng B., Zhou J., Yang Y., ACS Appl. Mater. Interfaces, 2019, 11, 14066—14075 |
85 | Nguyen C. C., Lucht B. L., J. Electrochem. Soc., 2014, 161, A1933 |
86 | Jin Y., Kneusels N. J. H., Marbella L. E., Castillo⁃Martínez E., Magusin P. C. M. M., Weatherup R. S., Jónsson E., Liu T., Paul S., Grey C. P., J. Am. Chem. Soc., 2018, 140, 9854—9867 |
87 | Lee S. J., Han J. G., Lee Y., Jeong M. H., Shin W. C., Ue M., Choi N. S., Electrochim. Acta, 2014, 137, 1—8 |
88 | Nie M., Abraham D. P., Chen Y., Bose A., Lucht B. L., J. Phys. Chem. C, 2013, 117, 13403—13412 |
89 | Wang J., Zhang L., Zhang H., Ionics, 2018, 24, 3691—3698 |
90 | Han J. G., Lee J. B., Cha A., Lee T. K., Cho W., Chae S., Kang S. J., Kwak S. K., Cho J., Hong S. Y., Choi N. S., Energy Environ. Sci., 2018, 11, 1552—1562 |
91 | Jo H., Kim J., Nguyen D. T., Kang K. K., Jeon D. M., Yang A. R., Song S. W., J. Phys. Chem. C, 2016, 120, 22466—22475 |
92 | Yao K., Zheng J. P., Liang R., J. Power Sources, 2018, 381, 164—170 |
93 | Jaumann T., Balach J., Klose M., Oswald S., Eckert J., Giebeler L., J. Electrochem. Soc., 2016, 163, A557 |
94 | Yang G., Frisco S., Tao R., Philip N., Bennett T. H., Stetson C., Zhang J. G., Han S. D., Teeter G., Harvey S. P., ACS Energy Lett., 2021, 6, 1684—1693 |
95 | Xu Z., Yang J., Li H., Nuli Y., Wang J., J. Mater. Chem. A, 2019, 7, 9432—9446 |
96 | Chen J., Fan X., Li Q., Yang H., Khoshi M. R., Xu Y., Hwang S., Chen L., Ji X., Yang C., He H., Wang C., Garfunkel E., Su D., Borodin O., Wang C., Nat. Energy, 2020, 5, 386—397 |
97 | Dunn R. P., Nadimpalli S. P. V., Guduru P., Lucht B. L., J. Electrochem. Soc., 2013, 161, A176 |
98 | Matsumoto K., Inoue K., Utsugi K., J. Power Sources, 2015, 273, 954—958 |
99 | Suo L., Hu Y. S., Li H., Armand M., Chen L., Nat. Commun., 2013, 4, 1—9 |
100 | Qian J., Henderson W. A., Xu W., Bhattacharya P., Engelhard M., Borodin O., Zhang J. G., Nat. Commun., 2015, 6, 6362 |
101 | Ren X., Chen S., Lee H., Mei D., Engelhard M. H., Burton S. D., Zhao W., Zheng J., Li Q., Ding M. S., Chem, 2018, 4, 1877—1892 |
102 | Cao X., Ren X., Zou L., Engelhard M. H., Huang W., Wang H., Matthews B. E., Lee H., Niu C., Arey B. W., Cui Y., Wang C., Xiao J., Liu J., Xu W., Zhang J. G., Nat. Energy, 2019, 4, 796—805 |
103 | Jia H., Zou L., Gao P., Cao X., Zhao W., He Y., Engelhard M. H., Burton S. D., Wang H., Ren X., Li Q., Yi R., Zhang X., Wang C., Xu Z., Li X., Zhang J. G., Xu W., Adv. Energy Mater., 2019, 9, 1900784 |
104 | Chae S., Kwak W. J., Han K. S., Li S., Engelhard M. H., Hu J., Wang C., Li X., Zhang J. G., ACS Energy Lett., 2021, 6, 387—394 |
105 | Huo H., Janek J., ACS Energy Lett., 2022, 7, 4005—4016 |
106 | Lee S. J., Baik H. K., Lee S. M., Electrochem. Commun., 2003, 5, 32—35 |
107 | Chen C., Li Q., Li Y., Cui Z., Guo X., Li H., ACS Appl. Mater. Interfaces, 2018, 10, 2185—2190 |
108 | Tan D. H. S., Chen Y. T., Yang H., Bao W., Sreenarayanan B., Doux J. M., Li W., Lu B., Ham S. Y., Sayahpour B., Scharf J., Wu E. A., Han H. E., Hah H. J., Lee J. B., Chen Z., Meng Y. S., Science, 2021, 373, 1494—1499 |
[1] | 孙昭宇, 赵经纬, 刘军. 高比能锂离子电池高电压电解液的设计[J]. 高等学校化学学报, 2023, 44(5): 20220743. |
[2] | 胡诗颖, 沈佳艳, 韩峻山, 郝婷婷, 李星. CoO纳米颗粒/石墨烯纳米纤维复合材料的制备及电化学性能[J]. 高等学校化学学报, 2023, 44(2): 20220462. |
[3] | 毕如一, 赵吉路, 王江艳, 于然波, 王丹. 中空多壳层CoFe2O4的制备及锂离子电池性能研究[J]. 高等学校化学学报, 2023, 44(1): 20220453. |
[4] | 贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 20220157. |
[5] | 赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 改性钆/硼/聚乙烯纳米复合材料的制备及对中子和伽马射线的屏蔽性能[J]. 高等学校化学学报, 2022, 43(6): 20220039. |
[6] | 于鹏东, 关兴华, 王冬冬, 辛志荣, 石强, 殷敬华. 新型光、 热双响应形状记忆聚合物的制备与性能[J]. 高等学校化学学报, 2022, 43(6): 20220085. |
[7] | 赵君禹, 王春博, 王成杨, 张克, 丛冰, 杨岚, 赵晓刚, 陈春海. 导热膨胀石墨/聚醚酰亚胺复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(4): 20210800. |
[8] | 储瑶, 王烁, 张子诺, 王艺博, 蔡以兵. 铜粒子负载泡沫基相变复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(2): 20210619. |
[9] | 李淑蓉, 王琳, 陈玉贞, 江海龙. 金属-有机框架材料在液相催化化学制氢中的研究进展[J]. 高等学校化学学报, 2022, 43(1): 20210575. |
[10] | 高晓乐, 王家信, 李志芳, 李艳春, 杨冬花. 复合材料NiOx-ZSM-5的制备及微生物电解池催化析氢性能[J]. 高等学校化学学报, 2021, 42(9): 2886. |
[11] | 鲍俊全, 郑仕兵, 苑旭明, 史金强, 孙田将, 梁静. 有机盐PTO(KPD)2作为高性能锂离子电池正极材料的研究[J]. 高等学校化学学报, 2021, 42(9): 2911. |
[12] | 李占峰, 刘本学, 刘晓婵, 王新强, 张晶, 于诗摩, 赵新富, 张新恩, 伊希斌. 氧化锆湿凝胶中乙酰丙酮配体的脱除机理及气凝胶复合材料的制备[J]. 高等学校化学学报, 2021, 42(9): 2904. |
[13] | 赵凌云, 黄汉雄, 罗杜宇, 苏逢春. 复合材料柔软性对倒金字塔微结构阵列传感器性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2953. |
[14] | 李辉阳, 朱思颖, 李莎, 张桥保, 赵金保, 张力. 锂离子电池硅氧化物负极首次库伦效率的影响因素与提升策略[J]. 高等学校化学学报, 2021, 42(8): 2342. |
[15] | 卓增庆, 潘锋. 基于软X射线光谱的锂电池材料的电子结构与演变的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2332. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||