高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220625.doi: 10.7503/cjcu20220625
李怀科1, 岳贵初1, 谢海韵1, 刘静1, 高松伟1, 侯兰兰1, 李帅1, 苗贝贝2, 王女1, 白杰2, 崔志民1(), 赵勇1(
)
收稿日期:
2022-09-20
出版日期:
2023-01-10
发布日期:
2022-10-31
通讯作者:
崔志民
E-mail:cuizhm@buaa.edu.cn;zhaoyong@buaa.edu.cn
作者简介:
赵 勇, 男, 博士, 教授, 主要从事多级结构微纳米功能材料设计研究. E-mail: zhaoyong@buaa.edu.cn
基金资助:
LI Huaike1, YUE Guichu1, XIE Haiyun1, LIU Jing1, GAO Songwei1, HOU Lanlan1, LI Shuai1, MIAO Beibei2, WANG Nyu1, BAI Jie2, CUI Zhimin1(), ZHAO Yong1(
)
Received:
2022-09-20
Online:
2023-01-10
Published:
2022-10-31
Contact:
CUI Zhimin
E-mail:cuizhm@buaa.edu.cn;zhaoyong@buaa.edu.cn
Supported by:
摘要:
更大的比表面积、 更丰富的界面组成及更高效的传质路径是构筑多元催化体系, 实现催化剂效率提升的关键. 中空纳米纤维具有的多元空腔结构赋予其比表面积和界面组成上广阔的调变空间, 使其成为制备高效异相催化剂的理想平台. 静电纺丝技术的发展为中空纳米纤维的可控制备提供了更简易高效的方法, 促进了中空纳米纤维的结构创新和应用扩展. 本文从构筑策略、 结构特点及结构与性能的对应关系3个角度总结了基于静电纺丝法制备的不同组成和形态的中空纳米纤维材料在催化领域(包括光催化、 电催化、 热催化)应用中的独特优势. 首先展示了创新的静电纺丝方法结合后续工艺制备的中空纳米纤维的不同结构形态, 然后梳理了基于中空纳米纤维构筑高效催化剂的研究进展, 最后展望了中空纳米纤维在催化领域应用的未来发展趋势, 以期为高效异相催化剂的设计提供有益的参考.
中图分类号:
TrendMD:
李怀科, 岳贵初, 谢海韵, 刘静, 高松伟, 侯兰兰, 李帅, 苗贝贝, 王女, 白杰, 崔志民, 赵勇. 静电纺丝中空纳米纤维在催化领域的应用. 高等学校化学学报, 2023, 44(1): 20220625.
LI Huaike, YUE Guichu, XIE Haiyun, LIU Jing, GAO Songwei, HOU Lanlan, LI Shuai, MIAO Beibei, WANG Nyu, BAI Jie, CUI Zhimin, ZHAO Yong. Application of Electrospun Hollow Nanofibers in Catalysis. Chem. J. Chinese Universities, 2023, 44(1): 20220625.
Fig.2 Schematic illustration of the transformation process from solid fibers to CeO2 hollow fibers(A)[40], schematic illustration for the fabrication of hollow CuOand Cu nanofibers via single spinneret electrospinning(B), SEM image of hollow Cu nanofibers(C)[41], SEM image of porous hollow CuCo2O4 nanofibers(D), schematic of the synthesis of porous hollow CuCo2O4 nanofibers(E)[42](A) Copyright 2008, Elsevier; (B, C) Copyright 2011, the Royal Society of Chemistry; (D, E) Copyright 2018, American Chemical Society.
Fig.3 Schematic illustration for the fabrication of multi⁃wall hollow Sn/SnO2@C nanofibers(A), SEM images of solid(B), hollow(D) and wire⁃in⁃tube(F) SnO2 nanofibers after pre⁃oxidation and calcination in air, SEM images of wire⁃in⁃tube(C), tube⁃in⁃tube(E), and wire⁃in⁃double⁃wall⁃tube(G) Sn/SnO2@C hollow nanofibers after PPy coating and calcinating in N2[51]Copyright 2019, Wiley⁃VCH.
Fig.4 Schematic illustration of the sequential procedure for producing multichannel hollow carbon nanofibers via single spinneret electrospinning(A), SEM images of multichannel hollow carbon nanofibers with m(PAN)∶m(PMMA)=5∶5(B), 7∶3(C), 9∶1(D)[52], synthetic illustration of the formation process of V2O3/MCCNFs composites via single spinneret electrospinning(E), SEM image of V2O3/MCCNFs(F)[62], schematic illustration of the sequential procedure for producing Co2O3⁃multichannel hollow carbon nanofibers(G), SEM and TEM images of P⁃Co⁃MCNF with oxygen plasma exposure times of 0 min(H, I), 5 min(J, K) and 10 min(L, M)[63](A—D) Copyright 2007, Wiley⁃VCH; (E, F) Copyright 2020, Wiley⁃VCH; (G—M) Copyright 2020, American Chemical Society.
Fig.5 Experimental set⁃up used for co⁃electrospinning of compound core⁃shell nanofibers(A), TEM image of co⁃electrospun PEO(shell) and PDT(core)(B)[70], tri⁃axial electrospinning to produce lignin hollow nanofibers(C), SEM(D) and TEM(E) images of hollow carbon prepared by tri⁃axial electrospinning[71], schematic illustration of the multifluidic electrospinning(F), SEM images of hollow nanofibers with different channel numbers(G)[19], schematic illustration of the multifluidic coaxial electrospinning fabrication system(H), SEM(I) and TEM(J) images of the fibers with a wire⁃in⁃tube structure[20](A, B) Copyright 2003, Wiley⁃VCH; (C—E) Copyright 2007, Wiley⁃VCH; (F, G) Copyright 2007, American Chemical Society; (H—J) Copyright 2010, American Chemical Society.
Fig.6 SEM image of mesoporous TiO2 hollow fibers via the foaming assisted electrospinning(A), the hydrogen production photocatalyzed by the mesoporous TiO2 hollow nanofibers as well as P25 under different irradiation times(B), photocatalytic degradation of RhB(c0=10 mg/L) of mesoporous TiO2 hollow nanofibers and P25 under UV⁃visible light irradiation(C)[97], SEM image of hollow porous TiO2/C3N4 nanofibers with different magnification(D), photocatalytic H2 evolution time course of TiO2, g⁃C3N4, and HP⁃TiO2/C3N4(10%—70%)(E), RhB photocatalytic degradation performance over different photocatalysts under visible light(F)[11](A—C) Copyright 2015, the authors; (D—F) Copyright 2021, the Royal Society of Chemistry.
Fig.7 Schematic of the synthetic process of NiCoOP⁃NPs@MHCFs heterogeneous catalyst(A), FESEM(B) and TEM(C) images of NiCoOP⁃NPs@MHCFs, CO and H2 generation catalyzed by NiCoOP⁃NPs@M HCFs as a function of reaction time(D)[60]Copyright 2019, Wiley⁃VCH.
Fig.8 Schematic diagram of preparation of ZnIn2S4/SnO2 composite(A), TEM image of ZIS/SnO2 com⁃posite(B), schematic diagram of photocatalytic reduction of Cr(VI) by ZnIn2S4/SnO2 composite(C), comparison of photocatalytic reduction of Cr(VI) by SnO2, ZnIn2S4 and ZnIn2S4/SnO2 composites, and photocatalytic activity of ZnIn2S4/SnO2 with different initial concentrations of Cr(VI)(D)[85]Copyright 2020, Elsevier.
Fig.9 Schematic illustration of WS2/HNCNF by coaxial electrospinning(A), SEM(B) and STEM(C) images of WS2@HNCNF, linear sweep voltammetry(after iR⁃compensation) of various electrocatalysts as indicated(D) and corresponding Tafel plots(E), EIS spectra of WS2⁃based electrocatalysts, collected at the potential of -0.3 V(vs. RHE)(F)[119]Copyright 2015, American Chemical Society.
Fig.10 Schematic representation of the fabrication procedures towards N, P⁃HCNFs(A), TEM image of N, P⁃HCNF(B), EDS mapping images of C, N, O, and P elements of N, P⁃HCNF(C—F), ORR LSV curves of N, P⁃HCNFs and Pt/C catalysts at a rotation rate of 1600 r/min in O2⁃saturated 0.1 mol/L KOH solution with a scan rate of 10 mV/s(G) and corresponding Tafel plots(J), OER LSV curves of different catalysts in 0.1 mol/L KOH solution(H) and corresponding Tafel plots of these catalysts(K), HER LSV curves of different samples in N2⁃saturated 0.1 mol/L KOH solution(I) and corresponding Tafel slopes(L)[122]Copyright 2019, Elsevier.
Fig.11 Schematic illustration of the synthesized process of NiFe@C@Co CNFs(A), SEM images of NiFe@C@Co CNFs(B, C), ORR LSV polarization curves of CNFs, C@Co CNFs, NiFe@C CNFs, NiFe@C@Co CNFs, and Pt/C at the rotation rate of 1600 r/min(D) and corresponding Tafel curves(E), OER LSV polarization curves of CNFs, C@Co CNFs, NiFe@C CNFs, NiFe@C@Co CNFs, and RuO2(F)and corresponding Tafel curves(G)[125]Copyright 2022, Wiley⁃VCH.
Fig.12 Schematic illustration showing the process for the formation of Ga SA/a⁃TiO2(A), SEM(B) and TEM(C) images of Ga SA/a⁃TiO2, NH3 yields and FEs of Ga SA/a⁃TiO2, a⁃TiO2, and c⁃TiO2 nanofibers(D), NH3 yields and FEs of Ga SA/a⁃TiO2 nanofibers in N2 or Ar⁃saturated electrolyte alternately at -0.1 V vs. RHE for 2 h(E), EIS spectra of Ga SA/a⁃TiO2, a⁃TiO2, and c⁃TiO2 nanofibers(F), schematic illustration of NRR process catalyzed by Ga SA/a⁃TiO2 nanofibers(G)[117]Copyright 2022, American Chemical Society.
Fig.13 Schematic illustration of sequential fabrication steps for Co x Mn3-x O4/HACNFs(x=0, 1, 3)(A), SEM and TEM images of {CoAc+MnAc}/PMMA@PAN electrospun nanofibers before thermal treatment(B) and after thermal treatment(C), comparison of catalytic performances of samples under diffe⁃rent conditions(D), UV⁃Vis spectral variations of RhB in PMS and CoMn2O4/HACNFs process(E), degradation of RhB by multiple use of CoMn2O4/HACNFs(F), and proposed mechanisms of PMS activation by CoMn2O4/HACNFs(G)[142]Copyright 2020, Elsevier.
Fig.14 Schematic diagram for the preparation of Au/TiO2 HTHNFs(A), SEM(B) and TEM(C) images of TiO2 HTHNFs, UV⁃Vis absorption spectrum of the 4⁃NP reaction solution with different reaction times(D), catalytic reaction kinetic plots of the reduction of 4⁃NP by different catalysts(E), reusability tests of Au/TiO2 HTHNFs for the reduction of 4⁃NP(F), reaction mechanism of hydrogenation of 4⁃NP catalyzed by Au/TiO2 HTHNFs(G), and mass transfer models of Au/TiO2 hollow nanofibers and Au/TiO2 HTHNFs during the reaction processes(H)[22]Copyright 2019, American Chemical Society.
Fig.15 SEM images of pure SnO2(A) and 20% TiO2⁃SnO2⁃TiO2 composite nanofibers(B), responses of pure SnO2, 5%, 10%, and 20% TiO2⁃SnO2⁃TiO2 composite nanofibers to 500 ppm acetone under different operating temperatures(C), response/recovery curves of pure SnO2 and 20% TiO2⁃SnO2⁃TiO2 to acetone at 280 ℃(D), and mechanisms responsible for the resistance changes in hollow⁃nanofiber⁃based gas sensors(E)[146]Copyright 2021, Elsevier.
1 | Astruc D., Lu F., Aranzaes J. R., Angew. Chem. Int. Ed., 2005, 44(48), 7852—7872 |
2 | Wang X., Feng Y., Dong P., Huang J., Front. Chem., 2019, 7, 671 |
3 | Xu H., Shang H., Wang C., Du Y., Adv. Funct. Mater., 2020, 30(28), 2000793 |
4 | Wang F., Wang Y., Zhang L., Zhu J., Han B., Fan W., Xu L., Yu H., Cai W., Li Z., Deng Z., Shi W., Catal. Today, 2020, 355, 502—511 |
5 | Serp P., Corrias M., Kalck P., Appl. Catal. A: Gen., 2003, 253(2), 337—358 |
6 | Zhao T., Sun W., Gu X., Rønning M., Chen D., Dai Y., Yuan W., Holmen A., Appl. Catal. A: Gen., 2007, 323, 135—146 |
7 | Guler M. O., Stupp S. I., J. Am. Chem. Soc., 2007, 129(40), 12082—12083 |
8 | Guerrero⁃Pérez M. O., Catalysts, 2022, 12(1), 9 |
9 | Li S., Cui Z., Li D., Yue G., Liu J., Ding H., Gao S., Zhao Y., Wang N., Zhao Y., Compos. Commun., 2019, 13, 1—11 |
10 | Liu J., Liu X., Li D., Yue G., Li H., Li S., Gao S., Wang N., Cui Z., Bai J., Zhao Y., ChemNanoMat, 2020, 6(8), 1149—1163 |
11 | Liu J., Li D., Liu X., Zhou J., Zhao H., Wang N., Cui Z., Bai J., Zhao Y., New J. Chem., 2021, 45(47), 22123—22132 |
12 | Li D., Xia Y., Adv. Mater., 2004, 16(14), 1151—1170 |
13 | Inagaki M., Yang Y., Kang F., Adv. Mater., 2012, 24(19), 2547—2566 |
14 | Li Y., Zhu J., Cheng H., Li G., Cho H., Jiang M., Gao Q., Zhang X., Adv. Mater. Technol., 2021, 6(11), 2100410 |
15 | Li D., Xia Y., Nano Lett., 2004, 4(5), 933—938 |
16 | Yoon J., Yang H., Lee B., Yu W., Adv. Mater., 2018, 30(42), 1704765 |
17 | Liu R., Hou L., Yue G., Li H., Zhang J., Liu J., Miao B., Wang N., Bai J., Cui Z., Liu T., Zhao Y., Adv. Fiber Mater., 2022, 4(4), 604—630 |
18 | Li D., Yue G., Li S., Liu J., Li H., Gao Y., Liu J., Hou L., Liu X., Cui Z., Wang N., Bai J., Zhao Y., Engineering, 2022, 13, 116—127 |
19 | Zhao Y., Cao X., Jiang L., J. Am. Chem. Soc., 2007, 129(4), 764—765 |
20 | Chen H., Wang N., Di J., Zhao Y., Song Y., Jiang L., Langmuir, 2010, 26(13), 11291—11296 |
21 | Peng X., Santulli A., Sutter E., Wong S., Chem. Sci., 2012, 3(4), 1262—1272 |
22 | Yue G., Li S., Li D., Liu J., Wang Y., Zhao Y., Wang N., Cui Z., Zhao Y., Langmuir, 2019, 35(14), 4843—4848 |
23 | Wang X., Wang W., Zhang J., Wang H., Yang Z., Ning H., Zhu J., Zhang Y., Guan L., Teng X., Zhao Q., Wu M., Chem. Eng. J., 2021, 426, 131867 |
24 | Li D., Li H., Zheng S., Gao N., Li S., Liu J., Hou L., Liu J., Miao B., Bai J., Cui Z., Wang N., Wang B., Zhao Y., J. Colloid Interface Sci., 2022, 607, 655—661 |
25 | Chang W., Xu F., Mu X., Ji L., Ma G., Nie J., Mater. Res. Bull., 2013, 48(7), 2661—2668 |
26 | Xia H., Zhang S., Zhu X., Xing H., Xue Y., Huang B., Sun M., Li J., Wang E., J. Mater. Chem. A, 2020, 8(35), 18125—18131 |
27 | Huang K., Sun Y., Zhang Y., Wang X., Zhang W., Feng S., Adv. Mater., 2019, 31(38), 1801430 |
28 | Yang Z., Lu J., Ye W., Yu C., Chang Y., Appl. Surf. Sci., 2017, 392, 472—480 |
29 | Zhang C., Yu S., Chem. Soc. Rev., 2014, 43(13), 4423—4448 |
30 | Frenot A., Chronakis S., Curr. Opin. Colloid Interface Sci., 2003, 8(1), 64—75 |
31 | Bai F., Wu J. T., Gong G. M., Sun N., Zhao Y., Jiang L., Chem. J. Chinese Universities, 2013, 34(4), 751—759 |
白帆, 吴俊涛, 龚光明, 孙娜, 赵勇, 江雷. 高等学校化学学报, 2013, 34(4), 751—759 | |
32 | Yang X., Shao C., Liu Y., Mu R., Guan H., Thin Solid Films, 2005, 478(1/2), 228—231 |
33 | Liu P., Gong J., Yang S., Ma J., Xu J., J. Inorg. Mater., 2013, 28(6), 571—578 |
34 | Sahay R., Suresh Kumar, P., Sridhar R., Sundaramurthy J., Venugopal J., Mhaisalkar S. G., Ramakrishna S., J. Mater. Chem., 2012, 22(26), 12953—12971 |
35 | Tan D., Lee W., Kim Y. E., Ko Y. N., Youn M. H., Jeon Y. E., Hong J., Jeong S. K., Park K. T., ACS Sustain. Chem. Eng., 2020, 8(29), 10639—10645 |
36 | Zhang M., Huang X., Xin H., Li D., Zhao Y., Shi L., Lin Y., Yu J., Yu Z., Zhu C., Xu J., Appl. Surf. Sci., 2019, 473, 352—358 |
37 | Zhu L., Wang J., Liu J., Chen X., Xu Z., Ma Q., Wang Z., Liang J., Li S., Yan W., Appl. Surf. Sci., 2022, 590, 153085 |
38 | Jeong Y. J., Koo W. T., Jang J. S., Kim D. H., Kim M. H., Kim I. D., ACS Appl. Mater. Interfaces, 2018, 10(2), 2016—2025 |
39 | Gao X., Han S., Zhang R., Liu G., Wu J., J. Mater. Chem. B, 2019, 7(45), 7075—7089 |
40 | Cui Q., Dong X., Wang J., Li M., J. Rare Earths, 2008, 26(5), 664—669 |
41 | Xiang H., Long Y., Yu X., Zhang X., Zhao N., Xu J., CrystEngComm, 2011, 13(15), 4856—4860 |
42 | Wu H., Sun W., Shen J., Mao Z., Wang H., Cai H., Wang Z., Sun K., ACS Sustain. Chem. Eng., 2018, 6(11), 15180—15190 |
43 | Zhao J., Cheng Y., Yan X., Sun D., Zhu F., Xue Q., CrystEngComm, 2012, 14(18), 5879—5885 |
44 | Chaudhari S., Srinivasan M., J. Mater. Chem., 2012, 22(43), 23049—23056 |
45 | Einert M., Ostermann R., Weller T., Zellmer S., Garnweitner G., Smarsly B. M., Marschall R., J. Mater. Chem. A, 2016, 4(47), 18444—18456 |
46 | Zhang Z., Li X., Wang C., Wei L., Liu Y., Shao C., J. Phys. Chem. C, 2009, 113(45), 19397—19403 |
47 | Liu H., Han C., Shao C., Yang S., Li X., Li B., Li X., Ma J., Liu Y., ACS Appl. Nano Mater., 2019, 2(8), 4879—4890 |
48 | Cao F., Wang Y., Wang J., Yang X., Chen Y., Xv X., Zhou J., Li S., Qin G., Ceram. Int., 2019, 45(17), 23522—23527 |
49 | Fu W., Dai Y., Li J., Liu Z., Yang Y., Sun Y., Huang Y., Ma R., Zhang L., Sun Y., ACS Appl. Mater. Interfaces, 2017, 9(25), 21258—21266 |
50 | Mou F., Guan J., Shi W., Sun Z., Wang S., Langmuir, 2010, 26(19), 15580—15585 |
51 | Gao S., Wang N., Li S., Li D., Cui Z., Yue G., Liu J., Zhao X., Jiang L., Zhao Y., Angew. Chem. Int. Ed., 2020, 59(6), 2465—2472 |
52 | Kim C., Jeong Y., Ngoc B., Yang K., Kojima M., Kim Y., Endo M., Lee J., Small, 2007, 3(1), 91—95 |
53 | El-Deen A., Barakat N., Khalil K., Kim H., J. Mater. Chem. A, 2013, 1(36), 11001—11010 |
54 | Zhang L., Han L., Liu S., Zhang C., Liu S., RSC Adv., 2015, 5(130), 107313—107317 |
55 | Pan Y., Cheng X., Huang Y., Gong L., Zhang H., ACS Appl. Mater. Interfaces, 2017, 9(41), 35820—35828 |
56 | Sun X., Wang C., Gong Y., Gu L., Chen Q., Yu Y., Small, 2018, 14(35), 1802218 |
57 | Yuan B., Sun X., Zeng L., Yu Y., Wang Q., Small, 2018, 14(9), 1703252 |
58 | Gao K., Shen M., Duan C., Xiong C., Dai L., Zhao W., Lu W., Ding S., Ni Y., ACS Sustain. Chem. Eng., 2021, 9(50), 17068—17077 |
59 | He Y., Xu Y., Zhang M., Xu J., Chen B., Zhang Y., Bao J., Zhou X., Sci. Bull., 2022, 67(2), 151—160 |
60 | Wang Y., Wang S., Lou X(David)., Angew. Chem. Int. Ed., 2019, 58(48), 17236—17240 |
61 | Pan Y., Cheng X., Gong L., Shi L., Zhou T., Deng Y., Zhang H., ACS Appl. Mater. Interfaces, 2018, 10(37), 31441—31451 |
62 | Zhang T., Zhang L., Zhao L., Huang X., Li W., Li T., Shen T., Sun S., Hou Y., Small, 2020, 16(47), 2005302 |
63 | Kim S. G. Jun J., Kim Y., Kim J., Lee J., Jang J., ACS Appl. Mater. Interfaces, 2020, 12(18), 20613—20622 |
64 | Sun X., Wang C., Gong Y., Gu L., Chen Q., Yu Y., Small, 2018, 14(35), 1802218 |
65 | Tang K., Yu Y., Mu X., Aken, P., Maier J., Electrochem. Commun., 2013, 28, 54—57 |
66 | Wu Y., Jiang Y., Shi J., Gu L., Yu Y., Small, 2017, 13(22), 1700129 |
67 | Wang N., Zhang J. N., Chen H. Y., Zhao Y., Cao X. Y., Yang Q. L., Ma Y. M., Jiang L., Chem. J. Chinese Universities, 2010, 31(2), 227—230 |
王女, 张京楠, 陈洪燕, 赵勇, 曹新宇, 杨青林, 马永梅, 江雷. 高等学校化学学报, 2010, 31(2), 227—230 | |
68 | Kalra V., Lee J., Park J., Marquez M., Joo Y., Small, 2009, 5(20), 2323—2332 |
69 | Yu D., Wang M., Li X., Liu X., Zhu L., Annie Bligh S., Wiley Interdiscip. Rev.-Nanomedicine Nanobiotechnology, 2020, 12(3), e1601 |
70 | Sun Z., Zussman E., Yarin A., Wendorff J., Greiner A., Adv. Mater., 2003, 15(22), 1929—1932 |
71 | Lallave M., Bedia J., Ruiz⁃Rosas R., Rodríguez⁃Mirasol J., Cordero T., Otero J. C., Marquez, M., Barrero A., Loscertales I. G., Adv. Mater., 2007, 19(23), 4292—4296 |
72 | Yu D., Li X., Wang X., Yang J., Bligh S. W. A., Williams G. R., ACS Appl. Mater. Interfaces, 2015, 7(33), 18891—18897 |
73 | Qu H., Wei S., Guo Z., J. Mater. Chem. A, 2013, 1(38), 11513-11528 |
74 | Zhu S., Nie L., J. Ind. Eng. Chem., 2021, 93, 28—56 |
75 | Pascariu P., Homocianu M., Cojocaru C., Samoila P., Airinei A., Suchea M., Appl. Surf. Sci., 2019, 476, 16—27 |
76 | Wang D., Zhang M., Zhuang H., Chen X., Wang X., Zheng X., Yang J., Appl. Surf. Sci., 2017, 396, 888—896 |
77 | Zhu J., Shao C., Li X., Han C., Yang S., Ma J., Li X., Liu Y., Mater. Chem. Phys., 2018, 214, 507—515 |
78 | Zhang X., Thavasi V., Mhaisalkar S. G., Ramakrishna S., Nanoscale, 2012, 4(5), 1707—1716 |
79 | Mohammad Jafri, N. N., Jaafar J., Alias N. H., Samitsu S., Aziz F., Wan Salleh W. N., Mohd Yusop M. Z., Othman M. H. D., Rahman M. A., Ismail A. F., Matsuura T., Isloor A. M., Membranes, 2021, 11(8), 581 |
80 | Mohammad Jafri N. N., Jaafar J., Dzarfan Othman M. H., Rahman M. A., Aziz F., Yusof N., Wan Salleh W. N., Fauzi Ismail A., Mater. Today Proc., 2021, 46, 2004—2011 |
81 | Shi H., Fu J., Jiang W., Wang Y., Liu B., Liu J., Ji H., Wang W., Chen Z., Colloids Surf. Physicochem. Eng. Asp., 2021, 615, 126063 |
82 | Zhang J., Shao C., Li X., Xin J., Tao R., Liu Y., ACS Sustain. Chem. Eng., 2018, 6(8), 10714—10723 |
83 | Ouyang W., Liu S., Yao K., Zhao L., Cao L., Jiang S., Hou H., Compos. Commun., 2018, 9, 76—80 |
84 | Wang K., Zhang W., Lou F., Wei T., Qian Z., Guo W., J. Solid State Electrochem., 2018, 22(8), 2413—2423 |
85 | Li X., Chen D., Li N., Xu Q., Li H., He J., Lu J., J. Alloys Compd., 2020, 843, 155772 |
86 | Zhang J., Shao C., Li X., Xin J., Yang S., Liu Y., CrystEngComm, 2018, 20(3), 312—322 |
87 | Yang G., Yan W., Zhang Q., Shen S., Ding S., Nanoscale, 2013, 5(24), 12432-12439 |
88 | Ahn K., Pham⁃Cong D., Choi H. S., Jeong S. Y., Cho J. H., Kim J., Kim J. P., Bae J. S., Cho C. R., Curr. Appl. Phys., 2016, 16(3), 251—260 |
89 | Liu Y., Gao F., Wang L., Yang W., He X., Hou H., J. Mater. Sci. Mater. Electron., 2019, 30(2), 1487—1495 |
90 | Tomon C., Sarawutanukul S., Phattharasupakun N., Duangdangchote S., Chomkhundtod P., Kidkhunthod P., Sawangphruk M., Electrochimica Acta, 2021, 392, 139022 |
91 | Ji X., Su Z., Wang P., Ma G., Zhang S., ACS Nano, 2015, 9(4), 4600—4610 |
92 | Hu H., Gui L., Zhou W., Sun J., Xu J., Wang Q., He B., Zhao L., Electrochimica Acta, 2018, 285, 70—77 |
93 | Wang S., Wang Y., Zang S., Lou X (David)., Small Methods, 2020, 4(1), 1900586 |
94 | Lin X., Xia S., Zhang L., Zhang Y., Sun S., Chen Y., Chen S., Ding B., Yu J., Yan J., Adv. Mater., 2022, 34(16), 2200756 |
95 | Bo Y., Wang H., Lin Y., Yang T., Ye R., Li Y., Hu C., Du P., Hu Y., Liu Z., Long R., Gao C., Ye B., Song L., Wu X., Xiong Y., Angew. Chem. Int. Ed., 2021, 60(29), 16085—16092 |
96 | Li C., Gu M., Gao M., Liu K., Zhao X., Cao N., Feng J., Ren Y., Wei T., Zhang M., J. Colloid Interface Sci., 2022, 609, 341-352 |
97 | Hou H., Shang M., Wang L., Li W., Tang B., Yang W., Sci. Rep., 2015, 5(1), 1—9 |
98 | Liu Y., Ji H. W., Zhou D. F., Zhu X. F., Li Z. H., Chem. J. Chinese Universities, 2014, 35(1), 19—25 |
刘阳, 季宏伟, 周德凤, 朱晓飞, 李朝辉. 高等学校化学学报, 2014, 35(1), 19—25 | |
99 | Han Z. Y., Li Y. J., Chen F. T., Tang S. P., Wang P., Chem. J. Chinese Universities, 2020, 41(2), 308—316 |
韩志英, 李佑稷, 陈飞台, 汤森培, 王鹏. 高等学校化学学报, 2020, 41(2), 308—316 | |
100 | Zhang J., Cai Y., Hou X., Zhou H., Qiao H., Wei Q., J. Phys. Chem. C, 2018, 122(16), 8946—8953 |
101 | Wei Q., Xiong F., Tan S., Huang L., Lan E., Dunn B., Mai L., Adv. Mater., 2017, 29(20), 1602300 |
102 | Lu L., Cao X., Shen Z., Li L., Huo J., Chen W., Liu C., Liu H., Sustain. Mater. Technol., 2020, 26, e00221 |
103 | Zhang Z., Wu X., Kou Z., Song N., Nie G., Wang C., Verpoort F., Mu S., Chem. Eng. J., 2022, 428, 131133 |
104 | Yan J., Huang Y., Zhang Y., Peng W., Xia S., Yu J., Ding B., Nano Lett., 2021, 21(6), 2618—2624 |
105 | Zhang X., Guo S., Qin Y., Li C., Chem. Res. Chinese Universities, 2021, 37(3), 379—393 |
106 | Xu Z., Zhao H., Liang J., Wang Y., Li T., Luo Y., Shi X., Lu S., Feng Z., Wu Q., Sun X., Mater. Today Phys., 2020, 15, 100280 |
107 | Zhang Z., Wu X., Kou Z., Song N., Nie G., Wang C., Verpoort F., Mu S., Chem. Eng. J., 2022, 428, 131133 |
108 | Zhang Z., Cai J., Zhu H., Zhuang Z., Xu F., Hao J., Lu S., Li H., Duan F., Du M., Chem. Eng. J., 2020, 392, 123655 |
109 | Kim S., Jung H., Lee C., Kim M., Lee Y., ACS Sustainable Chem. Eng., 2019, 7(9), 8613—8620 |
110 | Li T., Lv Y., Su J., Wang Y., Yang Q., Zhang Y., Zhou J., Xu L., Sun D., Tang Y., Adv. Sci., 2017, 4(11), 1700226 |
111 | Barhoum A., El⁃Maghrabi H., Iatsunskyi I., Coy E., Renard A., Salameh C., Weber M., Sayegh S., Nada A., Roualdes S., Bechelany M., J. Colloid Interface Sci., 2020, 569, 286—297 |
112 | Cao X., Deng J., Pan K., Adv. Fiber Mater., 2020, 2(2), 85—92 |
113 | Yang L., Feng S., Xu G., Wei B., Zhang L., ACS Sustainable Chem. Eng., 2019, 7(5), 5462—5475 |
114 | Li W., Chen S., Zhong M., Wang C., Lu X., Chem. Eng. J., 2021, 415,128879 |
115 | Aljabour A., Coskun H., Apaydin D., Ozel F., Hassel A., Stadler P., Sariciftci N., Kus M., Appl. Catal. B: Environ., 2018, 229, 163—170 |
116 | Zong X., Jin Y., Liu C., Yao Y., Zhang J., Luo W., Züttel A., Xiong Y., Electrochem. Commun., 2021, 124, 106968 |
117 | Zhang M., Xu W., Ma C., Yu J., Liu Y., Ding B., ACS Nano, 2022, 16(3), 4186—4196 |
118 | Wu X., Lu T., Si Y., Ma C., Zhang P., Yu J., Liu Y., Ding B., Energy Environ. Mater. 2022,https://doi.org/10.1002/eem2.12316 |
119 | Yu S., Kim J., Yoon K. R., Jung J. W., Oh J., Kim I. D., ACS Appl. Mater. Interfaces, 2015, 7(51), 28116—28121 |
120 | Zhang H., Wang L., He W., Liu D., Shao H., Yu W., Yin D., Dong X., Int. J. Hydrog. Energy, 2022, 47(68), 29337—29347 |
121 | Ding X., Liu J., Cang R., Chang X., Zhang M., Catalysts, 2022, 12(8), 851 |
122 | Gao Y., Xiao Z., Kong D., Iqbal R., Yang Q., Zhi L., Nano Energy, 2019, 64, 103879 |
123 | Wang X., Li Y., Jin T., Meng J., Jiao L., Zhu M., Chen J., Nano Lett., 2017, 17(12), 7989—7994 |
124 | Peng W., Wang Y., Yang X., Mao L., Jin J., Yang S., Fu K., Li G., Appl. Catal. B: Environ., 2020, 268, 118437 |
125 | Chen X., Pu J., Hu X., Yao Y., Dou Y., Jiang J., Zhang W., Small, 2022, 18(16), 2200578 |
126 | Chang X., Yang B., Ding X., Ma X., Zhang M., J. Colloid Interface Sci., 2022, 610, 663—670 |
127 | Wang C., Kim J., Kim M., Lim H., Zhang M., You J., Yun J., Bando Y., Li J., Yamauchi Y., J. Mater. Chem. A, 2019, 7(22), 13743—13750 |
128 | Zhang C., Wu P., Liu G., Zhu Z., Zeng G., ACS Appl. Nano Mater., 2019, 2(8), 5224—5232 |
129 | Jin R., Yang Y., Xing Y., Chen L., Song S., Jin R., ACS Nano, 2014, 8(4), 3664—3670 |
130 | Wang C., Kim J., Kim M., Lim H., Zhang M., You J., Bando Y., Li J., Yamauchi Y., J. Mater. Chem. A, 2019, 7(22), 13743—13750 |
131 | Yu Y., Jin R., Easa J., Lu W., Yang M., Liu X., Xing Y., Shi Z., Chem. Commun., 2019, 55(29), 4178—4181 |
132 | Ji X., Su Z., Wang P., Ma G., Zhang S., ACS Nano, 2015, 9(4), 4600—4610 |
133 | Fu W., Dai Y., Li J., Liu Z., Yang Y., Sun Y., Huang Y., Ma R., Zhang L., Sun Y., ACS Appl. Mater. Interfaces, 2017, 9(25), 21258—21266 |
134 | Jin R., Yang Y., Li Y., Fang L., Xing Y., Song S., Chem. Commun., 2014, 50(41), 5447—5450 |
135 | Li W., Ma S., Li Y., Yang G., Mao Y., Luo J., Gengzang D., Xu X., Yan S., Sens. Actuator B: Chem., 2015, 211, 392—402 |
136 | Tian L., Sun Y., Huang H., Guo X., Qiao Z., Meng J., Zhong C., ChemistrySelect, 2020, 5(8), 2401—2407 |
137 | Yang F., Lu Y., Dong X., Liu M., Li Z., Wang X., Li L., Zhu C., Zhang W., Yu C., Yuan A., J. Hazard. Mater., 2022, 424, 127647 |
138 | Lu Y., Zhang W., Yang F., Dong X., Zhu C., Wang X., Li L., Yu C., Yuan A., Sep. Purif. Technol., 2022, 282, 120051 |
139 | La Torre A., Giménez⁃López M. C., Fay M. W., Rance G. A., Solomonsz W. A., Chamberlain T. W., Brown P. D., Khlobystov A. N., ACS Nano, 2012, 6(3), 2000—2007 |
140 | Dong C., Yu Q., Ye R., Su P., Liu J., Wang G., Angew. Chem. Int. Ed., 2020, 59(42), 18374—18379 |
141 | Kang S., Hwang J., Chem. Eng. J., 2020, 379, 122315 |
142 | Kang S., Hwang J., Chem. Eng. J., 2021, 406, 127158 |
143 | Wang L., Luo X., Zheng X., Wang R., Zhang T., RSC Adv., 2013, 3(25), 9723 |
144 | Cheng J., Wang B., Zhao M., Liu F., Zhang X., Sens. Actuator B: Chem., 2014, 190, 78—85 |
145 | Li W., Ma S., Li Y., Yang G., Mao Y., Luo J., Gengzang D., Xu X., Yan S., Sens. Actuator B: Chem., 2015, 211, 392—402 |
146 | Wang T., Cheng L., Sens. Actuator B: Chem., 2021, 334, 129644 |
[1] | 何建云, 蒋云波, 张爱敏, 唐振艳, 李鸿鹏. 新型卟啉基多孔有机聚合物COP-180负载钯催化剂的制备及应用[J]. 高等学校化学学报, 2023, 44(2): 20220535. |
[2] | 邓园, 王思, 丰海松, 张欣. Pd催化糠醛加氢反应中溶剂依赖效应的理论计算[J]. 高等学校化学学报, 2023, 44(2): 20220486. |
[3] | 宋佳欣, 崔静, 范晓强, 孔莲, 肖霞, 解则安, 赵震. 介孔二氧化硅负载高分散钒催化剂的制备及乙烷选择氧化性能[J]. 高等学校化学学报, 2023, 44(2): 20220532. |
[4] | 王雅芝, 贾显枝, 张宏港, 刘璐, 赵彬然. 介质阻挡放电等离子制备5Ni-5La/SiO2催化剂及其甲烷干重整反应催化性能[J]. 高等学校化学学报, 2023, 44(2): 20220503. |
[5] | 林俊旭, 习志威, 李志平, 王迎春. 钯催化炔丙醇与叔丁基异腈选择性合成吡咯并呋喃衍生物和氨基甲酸酯[J]. 高等学校化学学报, 2023, 44(2): 20220473. |
[6] | 胡平澳, 张琪, 张会茹. 锂硫电池中硒缺陷WSe2催化性能的理论研究[J]. 高等学校化学学报, 2023, 44(2): 20220595. |
[7] | 匡华艺, 陈晨. 贵金属纳米框架设计合成及电催化性能的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220586. |
[8] | 杨庆凤, 吕良, 赖小勇. 中空MOFs材料制备及电催化应用的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220666. |
[9] | 杨霁野, 孙大吟, 王妍, 谷安祺, 叶一兰, 丁书江, 杨振忠. 若干典型中空结构材料的模板合成与应用进展[J]. 高等学校化学学报, 2023, 44(1): 20220665. |
[10] | 刘双红, 夏思玉, 刘世奇, 李旻, 孙嘉杰, 钟永, 张锋, 白锋. 中空全固态Z型异质结光催化剂的研究进展[J]. 高等学校化学学报, 2023, 44(1): 20220512. |
[11] | 刘至辰, 张宏伟, 张博稳, 陈鹏, 袁珮. 吸附法制备金属/碳催化剂用于5-羟基甲基糠醛高效电催化氧化的研究[J]. 高等学校化学学报, 2023, 44(1): 20220631. |
[12] | 李姿若, 张红娟, 朱国勋, 夏伟, 汤静. 负载酞菁铁的氮掺杂中空碳球的电催化氧还原性能[J]. 高等学校化学学报, 2023, 44(1): 20220677. |
[13] | 秦永吉, 罗俊. 单原子催化剂在CO2转化中的应用[J]. 高等学校化学学报, 2022, 43(9): 20220300. |
[14] | 姚青, 俞志勇, 黄小青. 单原子催化剂的合成及其能源电催化应用的研究进展[J]. 高等学校化学学报, 2022, 43(9): 20220323. |
[15] | 范建玲, 唐灏, 秦凤娟, 许文静, 谷鸿飞, 裴加景, 陈文星. 氮掺杂超薄碳纳米片复合铂钌单原子合金催化剂的电化学析氢性能[J]. 高等学校化学学报, 2022, 43(9): 20220366. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||