高等学校化学学报 ›› 2023, Vol. 44 ›› Issue (1): 20220620.doi: 10.7503/cjcu20220620
张玲玲1, 董欢欢1, 何祥喜1,2, 李丽1,2, 李林1, 吴星樵1(), 侴术雷1(
)
收稿日期:
2022-09-17
出版日期:
2023-01-10
发布日期:
2022-10-17
通讯作者:
吴星樵,侴术雷
E-mail:xingqiaowu@wzu.edu.cn;chou@wzu.edu.cn
作者简介:
第一联系人:共同第一作者.
基金资助:
ZHANG Lingling1, DONG Huanhuan1, HE Xiangxi1,2, LI Li1,2, LI Lin1, WU Xingqiao1(), CHOU Shulei1(
)
Received:
2022-09-17
Online:
2023-01-10
Published:
2022-10-17
Contact:
WU Xingqiao, CHOU Shulei
E-mail:xingqiaowu@wzu.edu.cn;chou@wzu.edu.cn
Supported by:
摘要:
实现钠离子电池等储能设备的大规模应用对于能源的可持续发展以及完成“碳达峰碳中和”目标具有重要意义. 开发高性能的负极材料可提升钠离子电池的能量密度和循环稳定性, 是实现钠离子电池大规模应用的关键性因素.中空碳材料因其独特的结构而具有优异的倍率性能与循环稳定性, 作为钠离子负极材料具有广阔的应用前景. 本文从多角度出发, 综合评述了中空碳材料的合成方法, 以及其形貌、 杂原子修饰策略与储钠性能之间的关系, 并对其未来发展方向进行了展望.
中图分类号:
TrendMD:
张玲玲, 董欢欢, 何祥喜, 李丽, 李林, 吴星樵, 侴术雷. 中空碳材料用于钠离子电池负极的研究进展. 高等学校化学学报, 2023, 44(1): 20220620.
ZHANG Lingling, DONG Huanhuan, HE Xiangxi, LI Li, LI Lin, WU Xingqiao, CHOU Shulei. Progress of Hollow Carbon Materials as Anode for Sodium-ion Battery. Chem. J. Chinese Universities, 2023, 44(1): 20220620.
Fig.2 Scheme of formation process of HCSs(A), TEM images of the HCSs prepared with different reaction times(B—E)[57]Copyright 2018, American Chemical Society.
Fig.4 Advantages/disadvantages of these three synthetic methods for HCNsThe blue, black and red line are responding to hard⁃template method, soft⁃template method and self⁃template method, respectively.
Fig.5 Charge/discharge curves(A), cycle performance(B) of the HCNW at 50 mA/g, rate capabilities of the HCNW(C) and relationship between theoretical energy cost for Li/Na ions insertion into carbon and the interlayer distance of carbon(D)[74]Inset of (A): the morphology of the HCNW. Copyright 2012, American Chemical Society.
Fig.6 Charge/discharge curves of the HCNFs at 20 mA/g(A), rate capabilities(B) and long⁃term cycling performance of HCNF electrodes at 1.6 A/g(C)[76]Copyright 2019, the Royal Society of Chemistry.
Fig.7 TEM and HRTEM(inset) images of hollow carbon nanospheres(HCNs)(A), rate performance at variant rates and schemes of the electrochemical reaction process(inset) of HCNs and carbon spheres(CSs)(B), cycle performance of HCNs(C)[79]Copyright 2012, Wiley⁃VCH.
Fig.8 Schematic illustration of the synthesis route for MS⁃HCNs(A), TEM images of HCNs with different shell structures(B), the first discharge⁃charge profiles(C) and rate capabilities(D) of MS⁃HCNs, cyclability of 4S⁃HCNs and the solid carbon nanospheres at 30 mA/g(E)[81]Copyright 2018, Wiley⁃VCH.
Fig.9 TEM image of SNMHCSs(A), STEM and EDS mapping images of SNMHCSs(scale bar: 100 nm)(B), XRD patterns of SNMHCSs, NMHCSs and MHCSs(C) rate performances of SNMHCSs, NMHCSs and MHCSs(D), cycling performance of SNMHCSs electrode at 20 A/g(E)[88]Copyright 2019, Wiley⁃VCH.
Fig.10 SEM images of the prepared FPCC(A, B1), EDS mapping images of FPCC(B2—B4), charge⁃discharge curves(C), rate capabilities(D) and long⁃term cycling performance of FPCC and UCC(E), GITT profiles and the calculated D values of FPCC(F) and UCC electrodes(G)[104]Copyright 2017, American Chemical Society.
Material | Reversible capacity | Initial coulombic efficiency(%) | Rate capability | Cycling performance | Ref. | |
---|---|---|---|---|---|---|
Reversible capacity | Cycle | |||||
DHCS | 212.9 mA·h/g at 0.6 A/g | 37 | 113 mA·h/g at 6 A/g | 143.6 mA·h/g at 0.6 A/g | 1000 | [ |
HPSC⁃1400 | 411.1 mA·h/g at 0.02 A/g | 81.20 | 104.1 mA·h/g at 0.5 A/g | 287.5 mA·h/g at 0.1 A/g | 400 | [ |
GLSP⁃SP⁃2⁃800⁃2 | 311.5 mA·h/g at 0.1 A/g | — | 125 mA·h/g at 5 A/g | 111.1 mA·h/g at 5 A/g | 5000 | [ |
NHCS | — | — | 114 mA·h/g at 10 A/g | 163 mA·h/g at 0.5 A/g | 1200 | [ |
S⁃NCNFs | 336.2 mA·h/g at 0.05 A/g | — | 132 mA·h/g at 10 A/g | 187 mA·h/g at 2 A/g | 2000 | [ |
P⁃HCNs03 | 330 mA·h/g at 0.1 A/g | 73 | 252 mA·h/g at 2 A/g | 260 mA·h/g at 1 A/g | 500 | [ |
NPC | 333.6 mA·h/g at 0.1 A/g | — | 172 mA·h/g at 10 A/g | 180.3 mA·h/g at 5 A/g | 3000 | [ |
FPCC | 242.4 mA·h/g at 0.05 A/g | ca. 72 | 123.1 mA·h/g at 1 A/g | ca. 88% at 0.2 A/g | 600 | [ |
N/O⁃CNCs⁃600 | 330 mA·h/g at 0.1 A/g | — | 70 mA·h/g at 20 A/g | ca. 150 mA·h/g at 5 A/g | 10000 | [ |
N⁃CNF | 564 mA·h/g at 0.1 A/g | 35.47 | 154 mA·h/g at 15 A/g | 210 mA·h/g at 5 A/g | 7000 | [ |
HPCO | 290 mA·h/g at 0.1 A/g | 88.60 | 130 mA·h/g at 30 A/g | ca. 190 mA·h/g at 1 A/g | 1000 | [ |
CC700 | 320.6 mA·h/g at 0.05 A/g | 48.01 | 120.6 mA·h/g at 1 A/g | 105 mA·h/g at 1A/g | 8000 | [ |
3DHPCMs⁃800 | 287.5 mA·h/g at 0.1 A/g | 41.90 | 112.5 mA·h/g at 5 A/g | 313.8 mA·h/g at 0.1 A/g | 100 | [ |
NNSC | 311 mA·h/g at 0.1 A/g | 20.5 | 61 mA·h/g at 5 A/g | ca. 105 mA·h/g at 1 A/g | 9000 | [ |
CNT/SNCF | 370.8 mA·h/g at 0.1 A/g | 49.10 | 109.3 mA·h/g at 10 A/g | 150.4 mA·h/g at 5 A/g | 1000 | [ |
SN⁃HCS | 250 mA·h/g at 0.1 A/g | — | 110 mA·h/g at 10 A/g | 169 mA·h/g at 0.5 A/g | 2000 | [ |
N/S/P⁃HCMT | 302 mA·h/g at 0.1 A/g | 70 | 201mA·h/g at 1 A/g | 301 mA·h/g at 0.1 A/g | 100 | [ |
Table 1 Electrochemical performance of HCMs as anode for SIBs
Material | Reversible capacity | Initial coulombic efficiency(%) | Rate capability | Cycling performance | Ref. | |
---|---|---|---|---|---|---|
Reversible capacity | Cycle | |||||
DHCS | 212.9 mA·h/g at 0.6 A/g | 37 | 113 mA·h/g at 6 A/g | 143.6 mA·h/g at 0.6 A/g | 1000 | [ |
HPSC⁃1400 | 411.1 mA·h/g at 0.02 A/g | 81.20 | 104.1 mA·h/g at 0.5 A/g | 287.5 mA·h/g at 0.1 A/g | 400 | [ |
GLSP⁃SP⁃2⁃800⁃2 | 311.5 mA·h/g at 0.1 A/g | — | 125 mA·h/g at 5 A/g | 111.1 mA·h/g at 5 A/g | 5000 | [ |
NHCS | — | — | 114 mA·h/g at 10 A/g | 163 mA·h/g at 0.5 A/g | 1200 | [ |
S⁃NCNFs | 336.2 mA·h/g at 0.05 A/g | — | 132 mA·h/g at 10 A/g | 187 mA·h/g at 2 A/g | 2000 | [ |
P⁃HCNs03 | 330 mA·h/g at 0.1 A/g | 73 | 252 mA·h/g at 2 A/g | 260 mA·h/g at 1 A/g | 500 | [ |
NPC | 333.6 mA·h/g at 0.1 A/g | — | 172 mA·h/g at 10 A/g | 180.3 mA·h/g at 5 A/g | 3000 | [ |
FPCC | 242.4 mA·h/g at 0.05 A/g | ca. 72 | 123.1 mA·h/g at 1 A/g | ca. 88% at 0.2 A/g | 600 | [ |
N/O⁃CNCs⁃600 | 330 mA·h/g at 0.1 A/g | — | 70 mA·h/g at 20 A/g | ca. 150 mA·h/g at 5 A/g | 10000 | [ |
N⁃CNF | 564 mA·h/g at 0.1 A/g | 35.47 | 154 mA·h/g at 15 A/g | 210 mA·h/g at 5 A/g | 7000 | [ |
HPCO | 290 mA·h/g at 0.1 A/g | 88.60 | 130 mA·h/g at 30 A/g | ca. 190 mA·h/g at 1 A/g | 1000 | [ |
CC700 | 320.6 mA·h/g at 0.05 A/g | 48.01 | 120.6 mA·h/g at 1 A/g | 105 mA·h/g at 1A/g | 8000 | [ |
3DHPCMs⁃800 | 287.5 mA·h/g at 0.1 A/g | 41.90 | 112.5 mA·h/g at 5 A/g | 313.8 mA·h/g at 0.1 A/g | 100 | [ |
NNSC | 311 mA·h/g at 0.1 A/g | 20.5 | 61 mA·h/g at 5 A/g | ca. 105 mA·h/g at 1 A/g | 9000 | [ |
CNT/SNCF | 370.8 mA·h/g at 0.1 A/g | 49.10 | 109.3 mA·h/g at 10 A/g | 150.4 mA·h/g at 5 A/g | 1000 | [ |
SN⁃HCS | 250 mA·h/g at 0.1 A/g | — | 110 mA·h/g at 10 A/g | 169 mA·h/g at 0.5 A/g | 2000 | [ |
N/S/P⁃HCMT | 302 mA·h/g at 0.1 A/g | 70 | 201mA·h/g at 1 A/g | 301 mA·h/g at 0.1 A/g | 100 | [ |
1 | Chu S., Majumdar A., Nature, 2012, 488(7411), 294—303 |
2 | Yang Z., Zhang J., Kintner⁃Meyer M. C., Lu X., Choi D., Lemmon J. P., Liu J., Chem. Rev., 2011, 111(5), 3577—3613 |
3 | Yan Z., Zhao L., Wang Y., Zhu Z., Chou S., Adv. Funct. Mater., 2022, 2205622 |
4 | Dunn B., Kamath H., Tarascon J. M., Science, 2011, 334(6058), 928—935 |
5 | Palomares V., Serras P., Villaluenga I., Hueso K. B., Carretero⁃González J., Rojo T., Energy Environ. Sci., 2012, 5(3), 5884—5901 |
6 | Larcher D., Tarascon J. M., Nat. Commun., 2015, 7(1), 19—29 |
7 | Lamb J., Manthiram A., ACS Appl. Mater. Interfaces, 2022, 14(25), 28865—28872 |
8 | Yabuuchi N., Kubota K., Dahbi M., Komaba S., Chem. Rev., 2014, 114(23), 11636—11682 |
9 | Walter M., Kovalenko M. V., Kravchyk K. V., New J. Chem., 2020, 44(5), 1677—1683 |
10 | Alvira D., Antorán D., Manyà J. J., Chem. Eng. J., 2022, 447, 137468 |
11 | Xu Y., Gao J., Tao X., Sun Y., Liu Y., Cao A., Wan L., ACS Appl. Mater. Interfaces, 2020, 12(13), 15313—15319 |
12 | Hu H., Zhu Y., Xiao Y., Li S., Li J., Hao Z., Zhao J., Chou S., Adv. Energy Mater., 2022, 12(32), 2201511 |
13 | Xiao Y., Wang H., Hu H., Zhu Y., Li S., Li J., Wu X., Chou S., Adv. Mater., 2022, 34(33), 2202695 |
14 | Zhu Y., Xiao Y., Dou S., Kang Y., Chou S., eScience, 2021, 1(1), 13—27 |
15 | Ni Q., Bai Y., Wu F., Wu C., Adv. Sci., 2017, 4(3), 1600275 |
16 | Liu X., Tang L., Xu Q., Liu H., Wang Y., Electrochim. Acta, 2019, 296, 345—354 |
17 | Liu X., Lai W., Peng J., Gao Y., Zhang H., Yang Z., He X., Hu Z., Li L., Qiao Y., Wu M., Liu H., Carbon Neutralization, 2022, 1(1), 49—58 |
18 | Wang W., Gang Y., Hu Z., Yan Z., Li W., Li Y., Gu Q. F., Wang Z., Chou S., Liu H., Dou S., Nat. Commun., 2020, 11(1), 980 |
19 | Wang W., Gang Y., Peng J., Hu Z., Yan Z., Lai W., Zhu Y., Appadoo D., Ye M., Cao Y., Gu Q., Liu H., Dou S., Chou S., Adv. Funct. Mater., 2022, 32(25), 2111727 |
20 | Xu L., Li H., Du T., Xue Q., Gao Y., Yu Z., Bai H., Battery Energy, 2022, 1(2), 20210003 |
21 | Liu X., Peng J., Lai W., Gao Y., Zhang H., Li L., Qiao Y., Chou S., Adv. Funct. Mater., 2022, 32(7), 2108616 |
22 | Liu Y., Merinov B. V., Goddard W. A., Proc. Natl. Acad. Sci., 2016, 113(14), 3735—3739 |
23 | Li Y., Lu Y., Adelhelm P., Titirici M. M., Hu Y., Chem. Soc. Rev., 2019, 48(17), 4655—4687 |
24 | He X., Zhao J., Lai W., Li R., Yang Z., Xu C., Dai Y., Gao Y., Liu X., Li L., Xu G., Qiao Y., Chou S., Wu M., ACS Appl. Mater. Interfaces, 2021, 13(37), 44358—44368 |
25 | Yuan B., Zeng L., Sun X., Yu Y., Wang Q., Nano Res., 2018, 11(4), 2256—2264 |
26 | Yan R., Josef E., Huang H., Leus K., Niederberger M., Hofmann J.P., Walczak R., Antonietti M., Oschatz M., Adv. Funct. Mater., 2019, 29(26), 1902858 |
27 | Zhu Z., Zhong W., Zhang Y., Dong P., Sun S., Zhang Y., Li X., Carbon Energy, 2021, 3(4), 541—553 |
28 | Chen X., Liu C., Fang Y., Ai X., Zhong F., Yang H., Cao Y., Carbon Energy, 2022, doi: 10.1002/cey2.196 |
29 | Wang J., Liu X., Mao S., Huang J., Nano Lett., 2012, 12(11), 5897—5902 |
30 | Darwiche A., Marino C., Sougrati M. T., Fraisse B., Stievano L., Monconduit L., J. Am. Chem. Soc., 2012, 134(51), 20805—20811 |
31 | Zhao L., Hu Z., Lai W., Tao Y., Peng J., Miao Z., Wang Y., Chou S., Liu H., Dou S., Adv. Energy Mater., 2020, 11(1), 2002704 |
32 | Dou X., Hasa I., Saurel D., Vaalma C., Wu L., Buchholz D., Bresser D., Komaba S., Passerini S., Mater. Today, 2019, 23, 87—104 |
33 | Tao F., Liu Y., Ren X., Jiang A., Wei H., Zhai X., Wang F., Stock H. R., Wen S., Ren F., J. Alloys Compd., 2021, 873, 159742 |
34 | Chu Z., Yue C., Solid State Ionics, 2016, 287, 36—41 |
35 | Luo J., Sun Y., Guo S., Xu Y., Chang B., Liu C., Cao A., Wan L., Mater. Chem. Front., 2020, 4(8), 2283—2306 |
36 | Liu T., Zhang L., Cheng B., Yu J., Adv. Energy Mater., 2019, 9(17), 1803900 |
37 | Caruso F., Caruso R. A., Mohwald H., Science, 1998, 282(5391), 1111—1114 |
38 | Gil⁃Herrera L. K., Blanco A., Juarez B. H., Lopez C., Small, 2016, 12(32), 4357—4362 |
39 | Han J., Xu G., Ding B., Pan J., Dou H., MacFarlane D. R., J. Mater. Chem. A, 2014, 2(15), 5352—5357 |
40 | Liu H., Lei W., Tong Z., Guan K., Jia Q., Zhang S., Zhang H., ACS Appl. Mater. Interfaces, 2021, 13(21), 24604—24614 |
41 | Yoon S. B., Sohn K., Kim J. Y., Shin C. H., Yu J. S., Hyeon T., Adv. Mater., 2002, 14(1), 19—21 |
42 | Guan B., Yu L., Lou X., Adv. Mater., 2016, 28(43), 9596—9601 |
43 | Stober W., Fink A., J. Colloid Interface Sci., 1968, 26, 62—69 |
44 | Carcouet C. C., van de Put M. W., Mezari B., Magusin P. C., Laven J., Bomans P. H., Friedrich H., Esteves A. C., Sommerdijk N. A., van Benthem R. A., de With G., Nano Lett., 2014, 14(3), 1433—1438 |
45 | Ahmed A., Ritchie H., Myers P., Zhang H., Adv. Mater., 2012, 24(45), 6042—6048 |
46 | Noonan O., Zhang H., Song H., Xu C., Huang X., Yu C., J. Mater. Chem. A, 2016, 4(23), 9063—9071 |
47 | Bu L., Kuai X., Zhu W., Huang X., Tian K., Lu H., Zhao J., Gao L., Electrochim. Acta, 2020, 356, 136804 |
48 | Lu A., Sun T., Li W., Sun Q., Han F., Liu D., Guo Y., Angew. Chem. Int. Ed., 2011, 50(49), 11765—11768 |
49 | He X., Sun H., Zhu M., Yaseen M., Liao D., Cui X., Guan H., Tong Z., Zhao Z., Chem. Commun, 2017, 53(24), 3442—3445 |
50 | Liu J., Shao M., Tang Q., Chen X., Liu Z., Qian Y., Carbon, 2003, 41(8), 1682—1685 |
51 | Bai Z., Zhang Y., Fan N., Guo C., Tang B., Mater. Lett., 2014, 119, 16—19 |
52 | Ding K., Gao B., Fu J., An W., Song H., Li X., Yuan Q., Zhang X., Huo K., Chu P. K., ChemElectroChem, 2017, 4(10), 2542—2546 |
53 | Jiang J., Nie G., Nie P., Li Z., Pan Z., Kou Z., Dou H., Zhang X., Wang J., Nano⁃Micro Lett., 2020, 12(1), 183 |
54 | Wang X., Feng J., Bai Y., Zhang Q., Yin Y., Chem. Rev., 2016, 116(18), 10983—11060 |
55 | Wu J., Jin C., Yang Z., Tian J., Yang R., Carbon, 2015, 82, 562—571 |
56 | Chen C., Wang H., Han C., Deng J., Wang J., Li M., Tang M., Jin H., Wang Y., J. Am. Chem. Soc., 2017, 139(7), 2657—2663 |
57 | Liu X., Song P., Hou J., Wang B., Xu F., Zhang X., ACS Sustain. Chem. Eng., 2018, 6(2), 2797—2805 |
58 | Zhang T., Liu P., Zhong Y., Zheng J., Deng K., Lv X., Ji J., Carbon, 2022, 198, 91—100 |
59 | Peng L., Hung C., Wang S., Zhang X., Zhu X., Zhao Z., Wang C., Tang Y., Li W., Zhao D., J. Am. Chem. Soc., 2019, 141(17), 7073—7080 |
60 | Yang X., Lu P., Yu L., Pan P., Elzatahry A. A., Alghamdi A., Luo W., Cheng X., Deng Y., Adv. Funct. Mater., 2020, 30(36), 2002488 |
61 | Guan B., Yu L., Lou X., J. Am. Chem. Soc., 2016, 138(35), 11306—11311 |
62 | Zhang P., Lou X., Adv. Mater., 2019, 31(29), 1900281 |
63 | Xue D., Zhu D., Duan H., Wang Z., Lv Y., Xiong W., Li L., Liu M., Gan L., Chem. Commun., 2019, 55(75), 11219—11222 |
64 | Natarajan S., Bajaj H. C., Aravindan V., J. Mater. Chem. A, 2019, 7(7), 3244—3252 |
65 | Wang S., Sun W., Yang D., Yang F., Mater. Today Energy, 2019, 13, 50—55 |
66 | Han F., Bai Y., Liu R., Yao B., Qi Y., Lun N., Zhang J., Adv. Energy Mater., 2011, 1(5), 798—801 |
67 | Begum H., Ahmed M. S., Jung S., J. Mater. Chem. A, 2021, 9(15), 9644—9654 |
68 | Sun H., Zhu Y., Yang B., Wang Y., Wu Y., Du J., J. Mater. Chem. A, 2016, 4(31), 12088—12097 |
69 | Jiang J. Yuan J., Nie P., Zhu Q., Chen C., He W., Zhang T., Dou H., Zhang X., J. Mater. Chem. A, 2020, 8, 3956—3966 |
70 | Ahn S. H., Manthiram A., Small, 2017, 13(11), 1603437 |
71 | Lijima S., Nature, 1991, 354(7), 56—58 |
72 | Matsushita T., Ishii Y., Kawasaki S., Mater. Express, 2013, 3(1), 30—36 |
73 | Goonetilleke D., Pramudita J. C., Choucair M., Rawal A., Sharma N., J. Power Sources, 2016, 314, 102—108 |
74 | Cao Y., Xiao L., Sushko M. L., Wang W., Schwenzer B., Xiao J., Nie Z., Saraf L. V., Yang Z., Liu J., Nano Lett., 2012, 12(7), 3783—3787 |
75 | Liu Y., Fan F., Wang J., Liu Y., Chen H., Jungjohann K. L., Xu Y., Zhu Y., Bigio D., Zhu T., Wang C., Nano Lett., 2014, 14(6), 3445—3452 |
76 | Han H., Chen X., Qian J., Zhong F., Feng X., Chen W., Ai X., Yang H., Cao Y., Nanoscale, 2019, 11(45), 21999—22005 |
77 | Yang S., Feng X., Zhi L., Cao Q., Maier J., Müllen K., Adv. Mater., 2010, 22(7), 838—842 |
78 | Xie F., Niu Y., Zhang Q., Guo Z., Hu Z., Zhou Q., Xu Z., Li Y., Yan R., Lu Y., Titirici M. M., Hu Y., Angew. Chem. Int. Ed., 2022, 134(11), e202116394 |
79 | Tang K., Fu L., White R. J., Yu L., Titirici M. M., Antonietti M., Maier J., Adv. Energy Mater., 2012, 2(7), 873—877 |
80 | Lyu T., Liang L., Shen P., J. Colloid Interface Sci., 2021, 604, 168—177 |
81 | Bin D., Li Y., Sun Y., Duan S., Lu Y., Ma J., Cao A., Hu Y., Wan L., Adv. Energy Mater., 2018, 8(26), 1800855 |
82 | Wu Q., Yang L., Wang X., Hu Z., Adv. Mater., 2020, 32(27), 1904177 |
83 | Wang J., Luo X., Young C., Kim J., Kaneti Y., You J., Kang Y., Yamauchi Y., Wu K., Chem. Mater., 2018, 30(13), 4401—4408 |
84 | Lyu T., Wang R., Liang L., Chen J., Hasan S., Lyu D., Tian Z., Shen P., J. Electroanal. Chem., 2020, 871, 114310 |
85 | Zhang Z., Huang Y., Li X., Zhang S., Jia Q., Li T., Chem. Eng. J., 2021, 421, 129827 |
86 | Jackson C., Smith G. T., Inwood D. W., Leach A. S., Whalley P. S., Callisti M., Polcar T., Russell A. E., Levecque P., Kramer D., Nat. Commun., 2017, 8, 15802 |
87 | Wu X., Chen X., Li X., Yan Y., Huang J., Li J., Shen R., Tian H., Yang D., Zhang H., J. Mater. Chem. A, 2021, 9(39), 22653—22659 |
88 | Ni D., Sun W., Wang Z., Bai Y., Lei H., Lai X., Sun K., Adv. Energy Mater., 2019, 1900026 |
89 | Seredych M., Rodríguez⁃Catellón E., Biggs M., Skinner W., Bandosz T., Cabron, 2014, 78, 540—558 |
90 | Chen Z., Zhu D., Li J., Liang D., Liu M., Hu Z., Li X., Feng Z., Huang J., Ionics, 2019, 25(9), 4517—4522 |
91 | Huang G., Kong Q., Jiang J., Yao W., Wang Q., ChemSusChem, 2022, e202201310 |
92 | Xu D., Chen C., Xie J., Zhang B., Miao L., Cai J., Huang Y., Zhang L., Adv. Energy Mater., 2016, 6(6), 1501929 |
93 | Su F., Poh C. K., Chen J., Xu G., Wang D., Li Q., Lin J., Lou X., Energy Environ. Sci., 2011, 4(3), 717—724 |
94 | Wang X., Weng Q., Liu X., Wang X., Tang D., Tian W., Zhang C., Yi W., Liu D., Bando Y., Golberg D., Nano Lett., 2014, 14(3), 1164—1171 |
95 | Cao Y., Mao S., Li M., Chen Y., Wang Y., ACS Catal., 2017, 7(12), 8090—8112 |
96 | Wen Y., Wang B., Luo B., Wang L., Eur. J. Inorg. Chem., 2016, (13/14), 2051—2055 |
97 | Qu Y., Zhang Z., Du K., Chen W., Lai Y., Liu Y., Li J., Carbon, 2016, 105, 103—112 |
98 | Bandosz T. J., Ren T., Carbon, 2017, 118, 561—577 |
99 | Sun X., Wang C., Gong Y., Gu L., Chen Q., Yu Y., Small, 2018, 14(35), 1802218 |
100 | Liu L., Li Q., Wang Z., Chen Y., Mater. Technol., 2018, 33(11), 748—753 |
101 | Wang X., Hou M., Shi Z., Liu X., Mizota I., Lou H., Wang B., Hou X., ACS Appl. Mater. Interfaces, 2021, 13(10), 12059—12068 |
102 | Jin H., Lu H., Wu W., Chen S., Liu T., Bi X., Xie W., Chen X., Yang K., Li J., Liu A., Lei Y., Wang J., Wang S., Lu J., Nano Energy, 2020, 70, 104569 |
103 | Zhong W., Chen Q., Yang F., Liu W., Li G., Xie K., Ren M., J. Electroanal. Chem., 2019, 850, 113392 |
104 | Lu H., Zhang X., Wan F., Liu D., Fan C., Xu H., Wang G., Wu X., ACS Appl. Mater. Interfaces, 2017, 9(14), 12518—12527 |
105 | Wang L., Lu B., Wang S., Cheng W., Zhao Y., Zhang J., Sun X., J. Mater. Chem. A, 2019, 7(18), 11117—11126 |
106 | Wang S., Xia L., Yu L., Zhang L., Wang H., Lou X., Adv. Energy Mater., 2016, 6(7), 1502217 |
107 | Zhou K., Qiu R., Zhen Y., Huang Z., Mathur S., Hong Z., Small, 2021, 17(25), 2100538 |
108 | Hao R., Yang Y., Wang H., Jia B., Ma G., Yu D., Guo L., Yang S., Nano Energy, 2018, 45, 220—228 |
109 | Zou G., Hou H., Cao X., Ge P., Zhao G., Yin D., Ji X., J. Mater. Chem. A, 2017, 5(45), 23550—23558 |
110 | Zhang W., Lan C., Xie X., Cao Q., Zheng M., Dong H., Hu H., Xiao Y., Liu Y., Liang Y., J. Colloid Interface Sci., 2019, 546, 53—59 |
111 | Chen D., Huang Z., Sun S., Zhang H., Wang W., Yu G., Chen J., ACS Appl. Mater. Interfaces, 2021, 13(37), 44369—44378 |
112 | Ye J., Zang J., Tian Z., Zheng M., Dong Q., J. Mater. Chem. A, 2016, 4(34), 13223—13227 |
113 | Yang D., Li S., Cheng D., Miao L., Zhong W., Yang X., Li Z., Energy & Fuels, 2021, 35(3), 2795—2804 |
[1] | 胡诗颖, 沈佳艳, 韩峻山, 郝婷婷, 李星. CoO纳米颗粒/石墨烯纳米纤维复合材料的制备及电化学性能[J]. 高等学校化学学报, 2023, 44(2): 20220462. |
[2] | 毕如一, 赵吉路, 王江艳, 于然波, 王丹. 中空多壳层CoFe2O4的制备及锂离子电池性能研究[J]. 高等学校化学学报, 2023, 44(1): 20220453. |
[3] | 贾洋刚, 邵霞, 程婕, 王朋朋, 冒爱琴. 赝电容控制型钙钛矿高熵氧化物La(Co0.2Cr0.2Fe0.2Mn0.2Ni0.2)O3负极材料的制备及储锂性能[J]. 高等学校化学学报, 2022, 43(8): 20220157. |
[4] | 吴卓彦, 李至, 赵旭东, 王倩, 陈顺鹏, 常兴华, 刘志亮. 一步法高效制备纳米Si/C复合材料及其在高性能锂离子电池中的应用[J]. 高等学校化学学报, 2021, 42(8): 2500. |
[5] | 田润赛, 卢芊, 张洪滨, 张渤, 冯源源, 魏金香, 冯季军. 氮杂碳原位包覆Cu2O/Co3O4@C异质结构复合材料的设计构筑及高效储锂性能[J]. 高等学校化学学报, 2021, 42(8): 2592. |
[6] | 孙全虎, 卢天天, 何建江, 黄长水. 含异原子石墨炔基电极材料的研究进展[J]. 高等学校化学学报, 2021, 42(2): 366. |
[7] | 刘志刚, 李家宝, 杨剑, 马浩, 王赪胤, 郭鑫, 汪国秀. 新型石墨化氮化碳/锡/氮掺杂碳复合物的制备及储钠性能[J]. 高等学校化学学报, 2021, 42(2): 633. |
[8] | 韩慕瑶, 赵丽娜, 孙洁. 硅及硅基负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(12): 3547. |
[9] | 叶一桦, 巴德良, 刘帅磊, 陈颍霖, 李园园, 刘金平. 高倍率铌基氧化物负极材料的研究进展[J]. 高等学校化学学报, 2021, 42(10): 3005. |
[10] | 荣华, 王春刚, 周明. 用作锂离子电池负极的FeS2微球的制备及性能[J]. 高等学校化学学报, 2020, 41(3): 447. |
[11] | 方亮, 丁晓丽, 宋云, 柳东明, 李永涛, 张庆安. 钙钛矿型LaCoO3电化学储锂的形貌调制效应[J]. 高等学校化学学报, 2019, 40(7): 1456. |
[12] | 林伟国, 孙伟航, 曲宗凯, 冯晓磊, 荣峻峰, 陈旭, 杨文胜. 锂离子电池负极材料纳米多孔硅/石墨/碳复合微球的制备与性能[J]. 高等学校化学学报, 2019, 40(6): 1216. |
[13] | 王秋娴, 李凯, 杨贝宁, 岳红云, 杨书廷. 海藻酸钠引导合成纳微复合结构ZnFe2O4及其在锂离子电池中的应用[J]. 高等学校化学学报, 2018, 39(9): 2039. |
[14] | 黄骥培, 李毅, 杨申辉, 周亚洲, 程晓农, 朱佳, 杨娟. 三维多孔结构Pt-Ag气凝胶的制备及电催化氧还原反应性能[J]. 高等学校化学学报, 2018, 39(5): 1063. |
[15] | 李常青, 杨东杰, 席跃宾, 秦延林, 邱学青. 二氧化硅/木质素多孔碳复合材料的制备及作为锂离子电池负极材料的性能[J]. 高等学校化学学报, 2018, 39(12): 2725. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||