高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (6): 2024.doi: 10.7503/cjcu20200722

• 高分子化学 • 上一篇    下一篇

强韧抗溶胀水凝胶的简单构筑及性能

雒春辉1,2(), 赵宇斐1   

  1. 1.北方民族大学化学与化学工程学院
    2.国家民委化工技术基础重点实验室, 银川 750021
  • 收稿日期:2020-09-29 出版日期:2021-06-10 发布日期:2021-06-08
  • 通讯作者: 雒春辉 E-mail:luochunhui@iccas.ac.cn
  • 基金资助:
    国家自然科学基金(52063001);宁夏自然科学基金(2020AAC03205);省部共建煤炭高效利用与绿色化工国家重点实验室开放课题(2021-K72)

Facile Synthesis and Properties of Robust and Anti-swelling Hydrogels

LUO Chunhui1,2(), ZHAO Yufei1   

  1. 1.School of Chemistry and Chemical Engineering
    2.Key Laboratory of Chemical Engineering and Technology,State Ethnic Affairs Commission,North Minzu University,Yinchuan 750021,China
  • Received:2020-09-29 Online:2021-06-10 Published:2021-06-08
  • Contact: LUO Chunhui E-mail:luochunhui@iccas.ac.cn

摘要:

以聚乙烯醇(PVA)和壳聚糖(CS)为原料, 采用循环冻融法制备了前驱体水凝胶(PVA-CS), 并经过浸泡氯化钠溶液和透析后处理构筑了强韧抗溶胀复合水凝胶(PVA-CS-6.16-30). 采用扫描电子显微镜(SEM)、 傅里叶变换红外光谱仪(FTIR)、 X射线衍射分析仪(XRD)、 差示扫描量热分析仪(DSC)及流变仪表征了两种水凝胶的微观结构, 采用拉力机测试了其机械性能. 结果表明: 由于结晶微区、 氢键及链缠结等协同交联作用, PVA-CS-6.16-30具备高效能量耗散机制. 与前驱体PVA-CS相比, PVA-CS-6.16-30的交联密度由7.69×10?4 mol/cm3增加至9.97×10?4 mol/cm3, 自由水含量由62.8%降低至52.6%, 网络尺寸由6.11 nm降低至5.21 nm, 凝胶分数由58.6%增加至86.8%, PVA结晶度由14.8%增加至17.2%, 其抗拉强度、 断裂伸长率、 韧性及抗压强度分别为2.9 MPa, 229%, 3.3 MJ/m3和7.6 MPa. 此外, 该复合水凝胶还具有优异的耐溶胀与抗蠕变性能. 在37 ℃的PBS缓冲溶液中浸泡7 d后, 其抗拉和抗压强度分别高达2.8和7.5 MPa, 优于常见水凝胶. 商品化的原料、 简单的构筑方法及优异的综合性能有望推动水凝胶在组织工程和生物医疗领域的应用.

关键词: 水凝胶, 耐溶胀性, 高强度, 简单构筑

Abstract:

Robust and anti-swelling hydrogels based on commercial available polyvinyl alcohol(PVA) and chitosan(CS) were prepared via freezing-thawing cycle to prepare the precursor PVA-CS hydrogel firstly, followed by soaking in sodium chloride aqueous solution and dialysis against water to obtain the resultant PVA-CS-6.16-30 hydrogel. The microstructures of the two hydrogels were characterized, and their mechanical pro-perties were evaluated. Due to the multiple interactions of hydrogen bonding, crystalline region and chain entanglement, the obtained PVA-CS-6.16-30 hydrogel dissipated external energy more effectively. Compared with the precursor PVA-CS hydrogel, the free water content and mesh size of the resultant hydrogel declined from 62.8% and 6.11 to 52.6% and 5.21 nm, respectively. In contrast, the gel fraction, cross-linking density and crystalline degree of PVA increased from 58.6%, 7.69×10-4 and 14.8% to 86.8%, 9.97×10-4 mol/cm3 and 17.2%, respectively. Benefited from the higher cross-linking density and more homogeneous gel framework, the tensile strength, elongation at break, toughness as well as compressive stress of the resultant hydrogel increased to 2.9 MPa, 229%, 3.3 MJ/m3 and 7.6 MPa, respectively. Furthermore, it exhibited excellent anti-swelling and creep-resistant abilities. The resultant hydrogel maintained its original shapes and mechanical properties(tensile and compressive strength were 2.8 and 7.5 MPa, respectively) even after soaking in PBS aqueous solution for 7 d at 37 ℃. We hope that the full-fledged starting material, easy-operated process and balanced properties of the resultant hydrogel will promote the development of tissue engineering and biomedical materials for commercial applications.

Key words: Hydrogel, Non-swellable property, High strength, Facile synthesis

中图分类号: 

TrendMD: