高等学校化学学报 ›› 2022, Vol. 43 ›› Issue (4): 20210841.doi: 10.7503/cjcu20210841

• 高分子化学 • 上一篇    下一篇

光交联自支撑丝素蛋白水凝胶的三维快速成型

黄益1,2, 吕玲玲2, 潘小鹏2, 孙广东2, 李永强2, 姚菊明1(), 邵建中2()   

  1. 1.浙江理工大学材料科学与工程学院, 2. 生态染整技术教育部工程研究中心, 杭州 310018
    3.浙江理工大学桐乡研究院, 桐乡 314500
  • 收稿日期:2021-12-18 出版日期:2022-04-10 发布日期:2022-02-12
  • 通讯作者: 姚菊明 E-mail:yaoj@zstu.edu.cn;jshao@zstu.edu.cn
  • 作者简介:邵建中, 女, 博士, 教授, 主要从事天然纤维结构及性能方面的研究. E-mail: jshao@zstu.edu.cn
  • 基金资助:
    国家自然科学基金(52103068);浙江省自然科学基金(LY21E030019);浙江理工大学桐乡研究院博士后基金(TYY202014);浙江理工大学基本科研业务费专项资金(2021Q008)

Three-dimensional Printing of Photocrosslinked Self-supporting Silk Fibroin Hydrogels

HUANG Yi1,2, LYU Lingling2, PAN Xiaopeng2, SUN Guangdong2, LI Yongqiang2, YAO Juming1(), SHAO Jianzhong2()   

  1. 1.School of Materials Science and Engineering
    2.Engineering Research Center for Eco?Dyeing and Finishing of Textiles,Ministry of Education,Zhejiang Sci?Tech University,Hangzhou 310018,China
    3.Zhejiang Sci?Tech University Tongxiang Research Institute,Tongxiang 314500,China
  • Received:2021-12-18 Online:2022-04-10 Published:2022-02-12
  • Contact: YAO Juming E-mail:yaoj@zstu.edu.cn;jshao@zstu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(52103068);the Natural Science Foundation of Zhejiang Province, China(LY21E030019);the Postdoctoral Foundation of Zhejiang Sci-Tech University Tongxiang Research Institute, China(TYY202014);the Fundamental Research Funds of Zhejiang Sci-Tech University, China(2021Q008)

摘要:

将丝素蛋白(SF)光诱导自交联原理与挤出式三维(3D)打印相结合, 开发了光交联自支撑SF水凝胶的原位成型加工技术. 采用旋转流变仪、 光流变测试系统和改装的挤出式3D打印设备等对SF溶液的流变性能、 光交联性能和成型加工性能等进行研究. 结果表明, SF溶液主要表现为黏性特征, 结构强度和稳定性均较差. 利用SF的光诱导自交联特性, 以三联吡啶氯化钌[Ru(Ⅱ)]和过硫酸钾(KPS)为蓝光引发体系, 可实现SF水凝胶的快速光交联成型. SF光交联行为符合指数函数增长模型, 因“滤镜效应”, 当Ru(Ⅱ)的浓度为0.05 mmol/L时, SF具有最佳的光交联性能. 通过调节气压、 针头孔径、 移动速度及固化速率等参数, 采用3D打印设备可实现从单层几何结构到多层三维网络构型SF凝胶材料的高效、 精准构建, 为SF的生物3D打印提供了新思路.

关键词: 光交联, 丝素蛋白水凝胶, 三维(3D)打印, 凝胶化行为, 弹性模量

Abstract:

As a biological macromolecular material degummed from silk fiber, silk fibroin(SF) is considered to be an ideal candidate for bioink components in three-dimensional(3D) bioprinting because of its excellent biocompatibility, biodegradability and tunable mechanical properties. However, the conventional silk fibroin crosslinking methods cannot meet the requirements of 3D printing on the real-time forming efficiency and biocompatibility. In order to realize the 3D rapid prototyping of silk fibroin, the in-situ photocrosslinking processing technology of self-supporting silk fibroin hydrogel was proposed by combining the blue light-induced self-crosslinking method with 3D extruded printing technology. The basic rheological properties, photocrosslinking properties and moulding processability of silk fibroin solution were studied by using rotary rheometer, photorheological test system and modified 3D extruded printing equipment. The results showed that the silk fibroin solution(<20%, mass fraction) was mainly characterized by viscidity, and its inadequate structural strength and stability cannot meet the requirements of 3D extruded printing for material formability, shape retention and printing accuracy. Rapid photocrosslinking molding processing of silk fibroin hydrogel can be achieved by light-induced self-crosslinking in the presence of tris(2,2-bipyridyl) ruthenium(II) chloride hexahydrate[Ru(Ⅱ)] and potassium persulfate(KPS) as blue light initiators. Tyrosine residues on adjacent SF macromolecular chains can be oxidized into tyrosine free radicals under the action of excited active species, and then coupled and crosslinked into di-tyrosine structure. Photocrosslinking behavior of silk fibroin under blue light irradiation conformed to exponential growth model. Due to the “filter effect” of the photosensitizer on the incident light, silk fibroin solution showed the optimized photocrosslinking performance when the dose of the photosensitizer Ru(Ⅱ) was 0.05 mmol/L. By further adjusting the parameters such as air pressure, needle aperture, moving speed and curing rate, semi-transparent and micro-elastic silk fibroin hydrogel can be printed in real time by 3D extruded printing equipment under continuous blue light irradiation. The efficient and accurate construction of silk fibroin gel materials from single-layer geometric structure to multi-layer three-dimensional network structure can be realized, which provides a new idea for biological 3D printing of self-supporting silk fibroin gel materials.

Key words: Photocrosslinking, Silk fibroin hydrogel, 3D printing, Gelation behavior, Elastic modulus

中图分类号: 

TrendMD: