高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (4): 1225.doi: 10.7503/cjcu20200716
收稿日期:
2020-09-27
出版日期:
2021-04-10
发布日期:
2021-03-09
通讯作者:
梁大鑫
E-mail:daxin.liang@nefu.edu.cn;yxie@nefu.edu.cn
作者简介:
谢延军, 男, 博士, 教授, 主要从事木质基生物质复合材料研究. E-mail: 基金资助:
BA Zhichen1, LIANG Daxin1(), XIE Yanjun2()
Received:
2020-09-27
Online:
2021-04-10
Published:
2021-03-09
Contact:
LIANG Daxin
E-mail:daxin.liang@nefu.edu.cn;yxie@nefu.edu.cn
Supported by:
摘要:
MXenes作为一类新兴的二维材料, 因具有独特的亲水性、 优异的力学性能、 丰富的表面官能团、 高导电率、 光热以及光电效应等性能而成为研究热点, 广泛应用在电磁屏蔽、 电化学储能、 生物医药、 分离、 传感器和海水淡化等领域. 虽然MXenes具有这些优异的性能, 但是其存在的与疏水性高分子相容性差、 带负电的官能团阻碍电解质运输及易氧化等问题限制了其实际应用. 近年来, 通过对MXenes进行界面调控以解决其固有缺陷, 并在此基础上对MXenes进行针对性的结构设计以提升界面稳定性, 其性能得到了进一步提升. 本文对MXenes复合材料发展过程中在界面调控和结构设计方面的研究进展进行总结, 并重点介绍了MXenes的结构和性质及MXenes在复合材料中的界面调控手段, 对MXenes复合材料的结构设计进行了阐述, 并对MXenes复合材料的发展前景进行了展望.
中图分类号:
TrendMD:
巴智晨, 梁大鑫, 谢延军. MXenes复合材料的发展: 界面调控及结构设计. 高等学校化学学报, 2021, 42(4): 1225.
BA Zhichen, LIANG Daxin, XIE Yanjun. Progress of MXenes Composites: Interface Modification and Structure Design. Chem. J. Chinese Universities, 2021, 42(4): 1225.
Fig.1 Structure of MAX phase and corresponding MXenes(A)[3] and preparation process and multilayer and monolayer structure of Ti3AlC2(B)[5](A) Copyright 2014, Wiley-VCH; (B) Copyright 2011, Wiley-VCH.
Etching method | Etchant | Etching temperature/℃ | Etching method | Etchant | Etching temperature/℃ |
---|---|---|---|---|---|
Acid with fluorine | HF | Room temperature(RT)—55 | Hydrothermal | NaOH | 270 |
H2O2+HF | 40 | NaBF4, HCl | 180 | ||
HCl+LiF | 35—55 | Electrochemical | NH4Cl/TMAOH | RT | |
HCl+(Na, K, NH4F) | 30—60 | HCl | RT | ||
NH4HF2 | RT | Lewis acid | ZnCl2, CuCl2, …… | 550 | |
Molten salts | LiF+NaF+KF | 550 |
Table 1 Different etching methods of MXenes[12]
Etching method | Etchant | Etching temperature/℃ | Etching method | Etchant | Etching temperature/℃ |
---|---|---|---|---|---|
Acid with fluorine | HF | Room temperature(RT)—55 | Hydrothermal | NaOH | 270 |
H2O2+HF | 40 | NaBF4, HCl | 180 | ||
HCl+LiF | 35—55 | Electrochemical | NH4Cl/TMAOH | RT | |
HCl+(Na, K, NH4F) | 30—60 | HCl | RT | ||
NH4HF2 | RT | Lewis acid | ZnCl2, CuCl2, …… | 550 | |
Molten salts | LiF+NaF+KF | 550 |
Fig.2 SEM image of multilayer MXene(A)[13] and TEM image of single layer MXene with SAED image in the upper right corner(B)[14](A) Copgright 2020, American Chemical Society; (B) Copgright 2019, Wiley-VCH.
Fig.3 Three structure configurations of MXenes with differernt arrangements of the surface atoms[15](A—C) Side views of configuration Ⅰ(A), configuration Ⅱ(B), configuration Ⅲ(C); (D, E) top views of (A) and (B), respectively. Configuration Ⅲ(C) is a mixture of Ⅰ and Ⅱ. Copyright 2013, American Chemical Society.
Fig.4 Contact angle of Ti3C2, F?Ti3C2 and TMA?Ti3C2(from left to right)(A)[27], schematic diagram of N?doped formats(B)[29] and process chart of grafting MXene onto alkyl phosphoric acid and photographs before and after modification(C)[30](A) Copyright 2020, American Chemical Society; (B) Copyright 2020, Wiley-VCH; (C) Copyright 2019, American Chemical Society.
Fig.5 Schematic diagram of MXene modified by aminosilane coupling agent(A), surface charge of the pristine MXene and AEAPTMS?Ti3C2Txversus pH(B) and 25 mL vials showing self?assembly of MXenes obtained from mixing the positively charged functionalized MXene and the negatively charged pristine MXene(C)[33]Copyright 2020, Wiley-VCH.
Fig.6 Schematic diagram of the interface layer and the binding energies between different functional groups and iodine atoms of MXene(A)[36], preparation of CTAB modified MXene(B)[38] and preparation of PANI modified MXene(C)[39](A) Copyright 2020, American Chemical Society; (B) Copyright 2020, Wiley-VCH; (C) Copyright 2020, American Chemical Society.
Fig.8 Preparation and characterization of Ni modified MXene[49](A) Preparation of Ni modified MXene; (B) Zeta dot bitmap; (C) XRD patterns of MAX, MXene, MXene/Ni(OH)2-30, and M/N-30 nanocomposites; (D, E) SEM images of MAX and MXene;(F) HRTEM image of MXene;(G—I) TEM image(G) and HRTEM images(H, I) of M/N-30; (J, K) corresponding strain maps of (I). The color scale for (J, K) is -0.5(black) to +0.5(white).Copyright 2019, American Chemical Society.Copyright 2018, American Association for the Advancement of Science.
Fig.9 Preparation of hydrophobic d?Ti3C2 membrane(A), hydrophobic d?Ti3C2 membrane based solar desalination device(B)[53] and MXene based photodynamic/photothermal/chemotherapy platform(C)[54](A, B) Copyright 2018, the Royal Society of Chemistry; (C) Copyright 2017, American Chemical Society.
Fig.10 Representative snapshot of DFT simulation of Ti3C2Tx?DGEBA interface(A), representative snapshot from coarse?grained MD simulation(B), TEM image of Ti3C2Tx?epoxy nanocomposite(C), SEM images of 1%(mass fraction) Ti3C2Tx MXene nanocomposite fracture surface, backscatter electron(D), electron(E) images of MXene particles protruding from sample surface at break[57](D, E) Yellow arrows indicate cavities around the edges of MXene particles. Copyright 2020, Elsevier.
Fig.12 TEM(A) and HRTEM(B) images of N?MQDS(160 ℃)[66], TEM images of a hollow Ti3C2Tx sphere(C) and its wall MXene layers(D)[74], SEM(E, F) and TEM(G, H) images of CTAB?Sn(Ⅳ)@Ti3C2[79]
Fig.13 Schematic diagram of the synthesis process of Janus structured Co?MQD(A)[68] and schematic representation of the synthesis of the CsPbBr3?Ti3C2Tx composite(in anhydrous toluene)(B)[69](A) Copyright 2020, Wiley-VCH; (B) Copyright 2020, American Chemical Society.Inset in (H): lateral size distribution of the anchored Sn(Ⅳ) nanocomplex. (A, B) Copyright 2018, Royal Society of Chemistry; (C, D) Copyright 2017, Wiley-VCH; (E—H) Copyright 2017, American Chemical Society.
Fig.14 Schematic illustration of bidirectional freeze?casting mechanism(a), and the aligned lamellar structure with interconnected bridges(b) of MXene aerogels assembled from different kinds of MXene flakes(Ti2CTx, Ti3C2Tx, and Ti3CNTx)(A), with the increase of mxene concentration, a continuous three?dimensional network structure is gradually formed(B—H)[75]Copyright 2019, Wiley-VCH.
1 | Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science, 2004, 306(5696), 666—669 |
2 | Naguib M., Mashtalir O., Carle V., Lu J., Huitman L., Gogotsi Y., Barsoum M. W., ACS Nano, 2012, 6(2), 1322—1331 |
3 | Naguib M., Mochalin V. N., Barsoum M. W., Gogotsi Y., Adv. Mater., 2014, 26(7), 992—1005 |
4 | Wang D., Li F., Lian R., Xu J., Kan D., Liu Y., Chen G., Gogotsi Y., Wei Y., ACS Nano, 2019, 13(10), 11078—11086 |
5 | Naguib M., Kurtoglu M., Presser V., Lu J., Niu J., Heon M., Hultman L., Gogotsi Y., Barsoum M. W., Adv. Mater., 2011, 23(37), 4248—4253 |
6 | M. Ghidiu, Lukatskaya M. R., Zhao M. Q., Gogotsi Y., Barsoum M. W., Nature, 2014, 516(7529), 78—81 |
7 | Urbankowski P., Anasori B., Makaryan T., Er D., Kota S., Walsh P. L., Zhao M., Shenoy V. B., Barsoum M. W., Gogotsi Y., Nanoscale, 2016, 8(22), 11385—11391 |
8 | Li T., Yao L., Liu Q., Gu J., Luo R., Li J., Yan X., Wang W., Liu P., Chen B., Zhang W., Abbas W., Naz R., Zhang D., Angew. Chem. Int. Ed., 2018, 57(21), 6115—6119 |
9 | Sun W., Shah S. A., Chen Y., Tan Z., Gao H., Habib T., Radovic M., Green M. J., J. Mater. Chem. A, 2017, 5(41), 21663—21668 |
10 | Soundiraraju B., George B. K., ACS Nano, 2017, 11(9), 8892—8900 |
11 | Li Y., Shao H., Lin Z., Lu J., Liu L., Duployer B., Persson P., Eklund P., Hultman L., Li M., Chen K., Zha X., Du S., Rozier P., Chai Z., Raymundo E., Taberna P., Simon P., Huang Q., Nat. Mater., 2020, 19, 894—899 |
12 | Verger L., Natu V., Carey M., Barsoum M. W., Trends in Chemistry, 2019, 1(7), 656—669 |
13 | Zhou B., Zhang Z., Li Y., Han G., Feng Y., Wang B., Zhang D., Ma J., Liu C., ACS Appl. Mater. Interfaces, 2020, 12(4), 4895—4905 |
14 | Li X. X., Ma Y., Shen P. Z., Zhang C. K., Yan J. F., Xia Y. B., Luo S. J., Gao Y. H., ChemElectroChem, 2020, 7(3), 821—829 |
15 | Xie Y., Kent P. R. C., Phys. Rev. B, 2013, 87(23), 235441 |
16 | Enyashin A. N., Ivanovskii A. L., J. Solid State Chem., 2013, 207, 42—48 |
17 | Khazaei M., Arai M., Sasaki T., Estili M., Sakka Y., Sci. Technol. Adv. Mater., 2014, 15(1), 014208 |
18 | Gao Y. J., Cao Y. Y., Gu Y. B., Zhuo H., Zhuang G. L., Deng S. W., Zhong X., Wei Z. Z., Chen J. H., Pan X., Wang J. G., Appl. Surf. Sci., 2019, 465, 911—918 |
19 | Liu P., Ding W. J., Liu J., Shen L. L., Jiang F. X., Liu P. P., Zhu Z. Y., Zhang G., Liu C. C., Xu J. K., J. Alloys Compd., 2020, 829, 154634 |
20 | Qi X., Chen X., Peng S. K., Wang J. X., Wang N., Yan S.J., J. Mater. Eng., 2019, 12, 10—20(齐新, 陈翔, 彭思侃, 王继贤, 王楠, 燕绍九. 材料工程, 2019, 12, 10—20) |
21 | Xu X. D, Li Z. D., Li L. S., Wang J., Adv. Funct. Mater., 2020, 30(47), 2000712 |
22 | Jiang X., Kuklin A., Baev A., Ge Y., Ågren H., Zhang H., Prasad P., Phys. Rep., 2020, 848, 1—58 |
23 | Khazaei M., Arai M., Sasaki T., Chung C., Venkataramanan N., Estili M., Kawazoe Y., Adv. Funct. Mater., 2013, 23(17), 2185—2192 |
24 | Yang J., Luo X., Zhang S., Chen L., Phys. Chem. Chem. Phys., 2016, 18(18), 12914—12919 |
25 | Li J. B., Zhang Q., Yan L., Wu G. R., Hu M. J., Lin X. B., Yuan K. J., Yang X. M., Adv. Mater. Interfaces, 2019, 6(23), 1901461 |
26 | Li J., Yuan X. T., Lin C., Yang Y. Q., Xu L., Du X., Xie J. L., Lin J. H., Sun J. L., Adv. Energy Mater., 2017, 7(15), 1602725 |
27 | Guan Y. X., Zhang M. M., Qin J., Ma X. X., Li C., Tang J. L., J. Phys. Chem. C, 2020, 124(25), 13664—13671 |
28 | Agresti A., Pazniak A., Pescetelli S., Di Vito A., Rossi D., Pecchia A., Auf der Maur M., Liedl A., Larciprete R., Kuznetsov D. V., Saranin D., Di Carlo A., Nat. Mater., 2019, 18(11), 1228—1234 |
29 | Lu C. J., Yang L., Yan B. Z., Sun L. B., Zhang P. G., Zhang W., Sun Z. M., Adv. Funct. Mater., 2020, 30(47), 2000852 |
30 | Kim D., Ko T. Y., Kim H., Lee G. H., Cho S., Koo C. M., ACS Nano, 2019, 13(12), 13818—13828 |
31 | Zhang L. X., Su W. T., Shu H. B., Lü T., Fu L., Song K. X., Huang X. W., Yu J. H., Lin C. T., Tang Y. P., Ceram. Int., 2019, 45(9), 11468—11474 |
32 | Liu Y. T., Zhang P., Sun N., Anasori B., Zhu Q. Z., Liu H., Gogotsi Y., Xu B., Adv. Mater., 2018, 30(23), e1707334 |
33 | Riazi H., Anayee M., Hantanasirisakul K., Shamsabadi A. A., Anasori B., Gogotsi Y., Soroush M., Adv. Mater. Interfaces, 2020, 7(6), 1902008 |
34 | Fang Y. Z., Lian R. Q., Li H. P., Zhang Y., Gong Z., Zhu K., Ye K., Yan J., Wang G. L., Gao Y., Wei Y. J., Cao D. X., ACS Nano, 2020, 14(7), 8744—8753 |
35 | Fang Y., Zhang Y., Zhu K., Lian R., Gao Y., Yin J., Ye K., Cheng K., Yan J., Wang G., Wei Y., Cao D., ACS Nano, 2019, 13(12), 14319—14328 |
36 | Sun C., Shi X., Zhang Y., Liang J., Qu J., Lai C., ACS Nano, 2020, 14(1), 1176—1184 |
37 | Wang J. T., Zhai P. F., Zhao T. K., Li M. J., Yang Z. H., Zhang H. Q., Huang J. J., Electrochimica Acta, 2019, 320, 134558 |
38 | Zhang F., Guo X., Xiong P., Zhang J. Q., Song J. J., Yan K., Gao X. C., Liu H., Wang G. X., Adv. Energy Mater., 2020, 10(20), 2000446 |
39 | Wang X., Wang J., Qin J., Xie X., Yang R., Cao M., ACS Appl. Mater. Interfaces, 2020, 12(35), 39181—39194 |
40 | Zhao R., Di H., Hui X., Zhao D., Wang R., Wang C., Yin L., Energy Environ. Sci., 2020, 13(1), 246—257 |
41 | Zhao R., Di H., Wang C., Hui X., Zhao D., Wang R., Zhang L., Yin L., ACS Nano, 2020, 14(10), 13938—13951 |
42 | Yang L., Dall'Agnese C. X., Dall'Agnese Y., Chen G., Gao Y., Sanehira Y., Jena A. K., Wang X. F., Gogotsi Y., Miyasaka T., Adv. Funct. Mater., 2019, 29(46), 1905694 |
43 | Wang H. B., Zhang J. F., Wu Y. P., Huang H. J., Jiang Q. G., J. Phys. Chem. Solids, 2018, 115, 172—179 |
44 | Feng Y. F., Deng Q. H., Peng C., Wu Q., Ceram. Int., 2019, 45(6), 7923—7930 |
45 | Aakyiir M., Yu H. M., Araby S., Wang R. Y., Michelmore A., Meng Q. S., Losic D., Choudhury N. R., Ma J., Chem. Eng. J., 2020, 397, 125439 |
46 | An H. S., Habib T., Shah S., Gao H. L., Radovic M., Green M. J., Lutkenhaus J. L., Sci. Adv., 2018, 4(3), eaaq0118 |
47 | Zhu X. L., Liu B. C., Hou H. J., Huang Z. Y., Zeinu K. M., Huang L., Yuan X. Q., Guo D. B., Hu J. P., Yang J. K., Electrochim. Acta, 2017, 248, 46—57 |
48 | Sun W. J., Zhao Y. Y., Cheng X. F., He J. H., Lu J. M., ACS Appl. Mater. Interfaces, 2020, 12(8), 9865—9871 |
49 | Li X., You W., Wang L., Liu J., Wu Z., Pei K., Li Y., Che R., ACS Appl. Mater. Interfaces, 2019, 11(47), 44536—44544 |
50 | Zhang X., Wang H. H., Hu R., Huang C. Y., Zhong W. J., Pan L. M., Feng Y. B., Qiu T., Zhang C. F., Yang J., Appl. Surf. Sci., 2019, 484, 383—391 |
51 | Iqbal A., Shahzad F., Hantanasirisakul K., KIm M., Kwon J., Hong J., Kim H., Kim D., Gogotsi Y., Koo C. M., Science, 2020, 369, 446—450 |
52 | Li J. B., Chi Z., Qin R. Z., Yan L., Lin X. B., Hu M. J., Shan G. C., Chen H. L., Weng Y. X., J. Phys. Chem. C, 2020, 124(19), 10306—10314 |
53 | Zhao J. Q., Yang Y. W., Yang C. H., Tian Y. P., Han Y., Liu J., Yin X. T., Que W. X., J. Mater. Chem. A, 2018, 6(33), 16196—16204 |
54 | Liu G., Zou J., Tang Q., Yang X., Zhang Y., Zhang Q., Huang W., Chen P., Shao J., Dong X., ACS Appl. Mater. Interfaces, 2017, 9(46), 40077—40086 |
55 | Bai L., Yi W., Sun T., Tian Y., Zhang P., Si J., Hou X., Hou J., J. Mater. Chem. B, 2020, 8(30), 6402—6417 |
56 | Mu W. J., Du S. Z., Yu Q. H, Li X. L., Wei H. Y., Yang Y. C., Dalton Trans., 2018, 47(25), 8375—8381 |
57 | Sliozberg Y., Andzelm J., Hatter C. B., Anasori B., Gogotsi Y., Hall A., Compos. Sci. Technol., 2020, 192, 108124 |
58 | Liu L., Ying G., Hu C., Zhang K., Ma F., Su L., Zhang C., Wang C., ACS Appl. Nano Mater., 2019, 2(9), 5553—5562 |
59 | Zhao S., Li L. L., Zhang H. B., Qian B. Q., Luo J. Q., Deng Z. M., Shi S. W., Russell T. P., Yu Z. Z., Mater. Chem. Front., 2020, 4(3), 910—917 |
60 | Paul P., Chakraborty P., Das T., Nafday D., Saha⁃Dasgupta T., Phys. Rev. B, 2017, 96(3), 035435 |
61 | Petukhov D. I., Chumakov A. P., Kan A. S., Lebedev V. A., Eliseev A. A., Konovalov O. V., Eliseev A. A., Nanoscale, 2019, 11(20), 9980—9986 |
62 | Feng L., Zha X., Luo K., Huang Q., He J., Liu Y., Deng W., Du S., J. Electron. Mater., 2017, 46, 2460—2466 |
63 | Sun H. L., Li Y. F., Yi R. H., Wang R. C., Zhou A. J., Sun Y. M., Energy Storage Sci. Technol., 2019, 8(1), 130—137(孙贺雷, 李云飞, 易荣华, 王若冲, 周爱军, 孙义民. 储能科学与技术, 2019, 8(1), 130—137) |
64 | Yang X., Zhang Y., Fu Z., Lu Z., Zhang X., Wang Y., Yang Z., Wu R., ACS Appl. Mater. Interfaces, 2020, 12(25), 28206—28216 |
65 | Tang J., Mathis T., Kurra N., Sarycheva A., Xiao X., Hedhili M., Jiang Q., Alshareef H., Xu B., Pan F., Gogotai Y., Angew. Chem. Int. Ed., 2019, 58(49), 17849—17855 |
66 | Xu Q., Ding L., Wen Y. Y., Yang W. J., Zhou H. J., Chen X. Z., Street J., Zhou A., Ong W. J., Li N., J. Mater. Chem. C, 2018, 6(24), 6360—6369 |
67 | Rafieerad A., Yan W., Sequiera G. L., Sareen N., Abu⁃El⁃Rub E., Moudgil M., Dhingra S., Adv. Healthc. Mater., 2019, 8(16), e1900569 |
68 | Tang R., Zhou S., Li C., Chen R., Zhang L., Zhang Z., Yin L., Adv. Funct. Mater., 2020, 30(19), 2000637 |
69 | Pandey P., Sengupta A., Parmar S., Bansode U., Gosavi S., Swarnkar A., Muduli S., Mohite A., Ogale S., ACS Appl.Nano Mater., 2020, 3(4), 3305—3314 |
70 | Gu M., Dai Z., Yan X., Ma J., Niu Y., Lan W., Wang X., Xu Q., J. Appl. Toxicol., 2020, 1—10 |
71 | Wang H., Zhao R., Hu H., Fan X., Zhang D., Wang D., ACS Appl. Mater. Interfaces, 2020, 12(36), 40176—40185 |
72 | Chen X., Xu W., Ding N., Ji Y., Pan J., Zhou D., Wu Y., Chen C., Song H., Adv. Funct. Mater., 2020, 30(30), 2003295 |
73 | Shahzad A., Nawaz M., Moztahida M., Jang J., Tahir K., Kim J., Lim Y., Vassiliadis V. S., Woo S. H., Lee D. S., Chem. Eng. J., 2019, 368, 400—408 |
74 | Zhao M. Q., Xie X., Ren C. E., Makaryan T., Anasori B., Wang G., Gogotsi Y., Adv. Mater., 2017, 29(37), 1702410 |
75 | Han M., Yin X., Hantanasirisakul K., Li X., Lqbal A., Hatter C., Anasori B., Koo C., Soda Y., Zhang L., Cheng L., Gogotsi Y., Adv. Opt. Mater., 2019, 7(10), 1900267 |
76 | Liao H., Guo X., Wan P., Yu G., Adv. Funct. Mater., 2019, 29(39), 1904507 |
77 | Gao Q., Sun W. W., Ilani-Kashkouli P., Tselev A., P. R. C. Kent, Kabengi N., M. Naguib, Alhabeb M., Tsai W. Y., Baddorf A. P., Huang J. S., Jesse S., Y. Gogotsi, Balke N., Energy Environ. Sci., 2020, 13(8), 2549—2558 |
78 | Zheng W., Sun Z. M., Zhang P. G., Tian W. B., Wang Y., Zhang Y. M., Materials Reports, 2017, 31(9), 1—14(郑伟, 孙正明, 张培根, 田无边, 王英, 张亚梅. 材料导报, 2017, 31(9), 1—14) |
79 | Luo J., Zhang W., Yuan H., Jin C., Zhang L., Huang H., Liang C., Xia Y., Zhang J., Gan Y., Tao X., ACS Nano, 2017, 11(3), 2459—2469 |
80 | Li J., Wang H., Xiao X., Energy Environ. Mater., 2020, 3(3), 306—322 |
[1] | 赵盛, 霍志鹏, 钟国强, 张宏, 胡立群. 改性钆/硼/聚乙烯纳米复合材料的制备及对中子和伽马射线的屏蔽性能[J]. 高等学校化学学报, 2022, 43(6): 20220039. |
[2] | 于鹏东, 关兴华, 王冬冬, 辛志荣, 石强, 殷敬华. 新型光、 热双响应形状记忆聚合物的制备与性能[J]. 高等学校化学学报, 2022, 43(6): 20220085. |
[3] | 赵君禹, 王春博, 王成杨, 张克, 丛冰, 杨岚, 赵晓刚, 陈春海. 导热膨胀石墨/聚醚酰亚胺复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(4): 20210800. |
[4] | 储瑶, 王烁, 张子诺, 王艺博, 蔡以兵. 铜粒子负载泡沫基相变复合材料的制备与性能[J]. 高等学校化学学报, 2022, 43(2): 20210619. |
[5] | 李淑蓉, 王琳, 陈玉贞, 江海龙. 金属-有机框架材料在液相催化化学制氢中的研究进展[J]. 高等学校化学学报, 2022, 43(1): 20210575. |
[6] | 高晓乐, 王家信, 李志芳, 李艳春, 杨冬花. 复合材料NiOx-ZSM-5的制备及微生物电解池催化析氢性能[J]. 高等学校化学学报, 2021, 42(9): 2886. |
[7] | 李占峰, 刘本学, 刘晓婵, 王新强, 张晶, 于诗摩, 赵新富, 张新恩, 伊希斌. 氧化锆湿凝胶中乙酰丙酮配体的脱除机理及气凝胶复合材料的制备[J]. 高等学校化学学报, 2021, 42(9): 2904. |
[8] | 赵凌云, 黄汉雄, 罗杜宇, 苏逢春. 复合材料柔软性对倒金字塔微结构阵列传感器性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2953. |
[9] | 魏敏敏, 袁泽, 闾敏, 马辉, 谢小吉, 黄岭. 稀土掺杂上转换纳米颗粒-金属有机骨架复合材料的研究进展[J]. 高等学校化学学报, 2021, 42(8): 2313. |
[10] | 李辉阳, 朱思颖, 李莎, 张桥保, 赵金保, 张力. 锂离子电池硅氧化物负极首次库伦效率的影响因素与提升策略[J]. 高等学校化学学报, 2021, 42(8): 2342. |
[11] | 王献伟, 柯红军, 袁航, 鲁戈舞, 李丽英, 孟祥胜, 宋书林, 王震. 耐高温可溶性聚酰亚胺树脂及其复合材料[J]. 高等学校化学学报, 2021, 42(6): 2041. |
[12] | 杨思娴, 钟文钰, 李超贤, 苏秋瑶, 许炳佳, 何谷平, 孙丰强. 聚苯胺纳米线/SnO2复合光催化材料的光化学制备与性能[J]. 高等学校化学学报, 2021, 42(6): 1942. |
[13] | 丁嘉乐, 金兰, 崔增多, 张海博, 张云鹤, 姜振华. 具有双交联网络结构的纳米复合材料的制备及介电性能[J]. 高等学校化学学报, 2021, 42(6): 2015. |
[14] | 张淑婷, 安琪. 高性能聚偏氟乙烯基柔性压电材料的设计策略进展[J]. 高等学校化学学报, 2021, 42(4): 1114. |
[15] | 詹舒辉, 赵亚松, 杨乃亮, 王丹. 石墨炔孔结构: 设计、 合成和应用[J]. 高等学校化学学报, 2021, 42(2): 333. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||