高等学校化学学报 ›› 2021, Vol. 42 ›› Issue (5): 1331.doi: 10.7503/cjcu20210003
耿传楠1, 化五星1, 凌国维2, 陶莹1, 张辰2(), 杨全红1(
)
收稿日期:
2021-01-04
出版日期:
2021-05-10
发布日期:
2021-05-08
通讯作者:
张辰,杨全红
E-mail:zhangc@tju.edu.cn;qhyangcn@tju.edu.cn
基金资助:
GENG Chuannan1, HUA Wuxing1, LING Guowei2, TAO Ying1, ZHANG Chen2(), YANG Quanhong1(
)
Received:
2021-01-04
Online:
2021-05-10
Published:
2021-05-08
Contact:
ZHANG Chen,YANG Quanhong
E-mail:zhangc@tju.edu.cn;qhyangcn@tju.edu.cn
Supported by:
摘要:
锂硫电池是高能量密度储能体系的重要发展方向, 但其本征的“固-液-固”转化过程缓慢, 穿梭效应的存在使其循环寿命和能量密度远低于理论值. 如何加速硫的可逆反应成为实现锂硫电池变革性突破的关键. 近年来, 催化过程在锂硫电池研究中崭露头角, 高效催化剂的引入能够降低硫转化的势垒, 加速“固-液-固”转化进程, 提高硫的利用率, 从“准源头”上降低穿梭效应发生的概率, 减少电解液需求量, 提升锂硫电池整体性能. 本文综合评述了锂硫电池中高效催化材料的研究进展, 提出原位表征技术对催化机理研究的重要性和紧迫性, 并对锂硫电池未来的技术发展趋势进行了展望.
中图分类号:
TrendMD:
耿传楠, 化五星, 凌国维, 陶莹, 张辰, 杨全红. 锂硫电池中的催化作用: 材料与表征. 高等学校化学学报, 2021, 42(5): 1331.
GENG Chuannan, HUA Wuxing, LING Guowei, TAO Ying, ZHANG Chen, YANG Quanhong. Catalysis in Li-sulfur Battery: Materials and Characterization. Chem. J. Chinese Universities, 2021, 42(5): 1331.
Fig.2 Li?S chemistry of rGO and rGO/Co?based compounds with various anions[37](A) p bands originated from the non-metal anions can benefit the interfacial charge interaction by tuning the electron energy of the valence band; (B) comparison of the rate capabilities of S@rGO/CoP in the recent literature; (C) CV curves of rGO and rGO/Co-based compounds in a symmetric cell with/without Li2S6 as the electrolyte; (D) long-term cycling performance of S@rGO/CoP at 4.0C. Copyright 2018, Elsevier.
Fig.3 Schematic of the design principle and characterization of a TiO2-TiN heterostructure and Ti3C2Tx/TiO2 heterostructure[38,39](A)—(C) Schematic of LiPSs conversion processes on TiN, TiO2 and the TiO2-TiN heterostructure surface; (D) high-resolution TEM images of the TiO2-TiN structure; (E) schematic illustration of LiPSs trapping and conversion process on the Ti3C2Tx/TiO2 heterostructures; (F) high-resolution TEM images of the Ti3C2Tx/TiO2 structure; (G) ultralong cycling for the optimal cells with the 7TiN:3TiO2-G coating layer at 1C for about 2000 cycles.(A)—(D) Copyright 2017, RSC Publishing; (E)—(G) Copyright 2019, Wiley-VCH.
Fig.4 Evolution of in?situ sulfur K?edge XANES upon electrochemical cycling based on linear combination analysis[75](A), in situ XRD measurements of a Li|HMSC cell[76](B), time?sequential TEM images of the lithiation of a C/TiO2?TiN/S particle[78](C) and in operando Raman spectra based on the S@3VO2?1VN/G cathode collected[40](D)(A) Copyright 2013, American Chemical Society; (B) Copyright 2019, Nature Publishing Group; (C) Copyright 2019, RSC Publishing; (D) Copyright 2018, RSC Publishing.
1 | Bruce P. G., Freunberger S. A., Hardwick L. J., Tarascon J. M., Nat. Mater., 2012, 11(1), 19—29 |
2 | Evers S., Nazar L. F., Acc. Chem. Res., 2013,46(5), 1135—1143 |
3 | Yin Y. X., Xin S., Guo Y. G., Wan L. J., Angew. Chem. Int. Ed., 2013, 52(50), 13186—13200 |
4 | Lim J., Pyun J., Char K., Angew. Chem. Int. Ed., 2015, 54(11), 3249—3258 |
5 | Fang R., Zhao S., Sun Z., Wang D. W., Cheng H. M., Li F., Adv. Mater., 2017, 29(48), 1606823 |
6 | Johansson P., Nat. Energy, 2017, 2(6), 1—2 |
7 | Huang J. Q., Zhang Q., Wei F., Energy Storage Mater., 2015, 1, 127—145 |
8 | Tao X., Wang J., Liu C., Wang H., Yao H., Zheng G., Zu C., Nat. Commun., 2016, 7, 11203 |
9 | Liu T., Hu H., Ding X., Yuan H., Jin C., Nai J., Liu Y., Wang Y., Wan Y., Tao X., Energy Storage Mater., 2020, 30, 346—366 |
10 | Shi H., Lv W., Zhang C., Wang D. W., Ling G., He Y., Kang F., Yang Q. H., Adv. Funct. Mater., 2018, 28(38), 1800508 |
11 | Zhou G., Zhao Y., Manthiram A., Adv. Energy Mater., 2015, 5(9), 1402263 |
12 | Li Z., Zhang J. T., Chen Y. M., Li J., Lou X. W., Nat. Commun., 2015, 6, 8850 |
13 | Lv D., Zheng J., Li Q., Xie X., Ferrara S., Nie Z., Mehdi L. B., Browning N. D., Zhang J., Graff G. L., Liu J., Xiao J., Adv. Energy Mater., 2015, 5, 1402290 |
14 | Ji X., Lee K. T., Nazar L. F., Nat. Mater., 2009, 8(6), 500—506 |
15 | Xin S., Gu L., Zhao N. H., Yin Y. X., Zhou L. J., Guo Y. G., Wan, L., J. Am. Chem. Soc., 2012, 134(45), 1 8510—18513 |
16 | Ai W., Zhou W., Du Z., Chen Y., Sun Z., Wu C., Zou C., Li C., Huang W., Yu T., Energy Storage Mater., 2017, 6, 112 |
17 | Yuan S., Bao J. L., Wang L., Xia Y., Truhlar D. G., Wang Y., Adv. Energy Mater., 2016, 6, 1501733 |
18 | Zheng J., Tian J., Wu D., Gu M., Xu W., Wang C., Gao F., Engelhard M. H., Zhang J. G., Liu J., Xiao J., Nano Lett., 2014, 14(5), 2345—2352 |
19 | Ye J. C., Chen J. J., Yuan R. M., Deng D. R., Zheng M. S., Cronin L., Dong Q. F., J. Am. Chem. Soc., 2018, 140(8), 3134—3138 |
20 | Yin P., Yao T., Wu Y., Zheng L., Lin Y., Liu W., Ju H., Zhu J., Hong X., Deng Z., Zhou G., Wei S., Li Y., Angew. Chem. Int. Ed., 2016, 55(36), 10800 |
21 | Zhou W., Yu Y., Chen H., DiSalvo F. J., Abruña H. D., J. Am. Chem. Soc., 2013, 135(44), 16736—16743 |
22 | Liu D., Zhang C., Zhou G., Lv W., Ling G., Zhi L., Yang Q. H., Adv. Sci., 2018, 5(1), 1700270 |
23 | Zhao M., Peng H. J., Li B. Q., Chen X., Xie J., Liu X., Zhang Q., Huang J. Q., Angew. Chem., Int. Ed., 2020, 132(23), 9096—9102 |
24 | Zhao M., Li B. Q., Chen X., Xie J., Yuan H., Huang J. Q., Chem., 2020, 6(12), 3297—3311 |
25 | Zhao M., Peng H. J., Zhang Z. W., Li B. Q., Chen X., Xie J., Chen X., Wei J. Y., Zhang Q., Huang J. Q., Angew. Chem. Int. Ed., 2019, 58(12), 3779—3783 |
26 | Faber M. S., Park K., Cabán-Acevedo M., Santra P. K., Jin S., J. Phys. Chem. Lett., 2013, 4(11), 1843—1849 |
27 | Ma Z., Li Z., Hu K., Liu D., Huo J., Wang S., J. Power Sources, 2016, 325(1), 71—78 |
28 | Faber M. S., Dziedzic R., Lukowski M. A., Kaiser N. S., Ding Q., Jin S., J. Am. Chem. Soc., 2014, 136(28), 10053—10061 |
29 | Yuan Z., Peng H. J., Hou T. Z., Huang J. Q., Chen C. M., Wang D. W., Cheng X. B., Wei F., Zhang Q., Nano Lett., 2016, 16(1), 519—527 |
30 | Zhou G., Tian H., Jin Y., Tao X., Liu B., Zhang R., Seh W. Z., Zhuo D., Liu Y., Sun J., Zhao J., Zu C., Wu D. S., Zhang Q., Cui Y., Proc. Natl. Acad. Sci. USA, 2017, 114(5), 840—845 |
31 | Mosavati N., Salley S. O., Ng K. Y. S., J. Power Sources, 2017, 340(1), 210—216 |
32 | Jeong T. G., Choi D. S., Song H., Choi J., Park S. A., Oh S. H., Kim H., Jung Y., Kim Y. T., ACS Energy Lett., 2017, 2(2), 327—333 |
33 | Zhang L., Chen X., Wan F., Niu Z., Wang Y., Zhang Q., Chen J., ACS Nano, 2018, 12(9), 9578—9586 |
34 | Ye Z., Jiang Y., Qian J., Li W., Feng T., Li L., Wu F., Chen R., Nano Energy, 2019, 64, 103965 |
35 | Mi Y., Liu W., Li X., Zhuang J., Zhou H., Wang H., Nano Res., 2017, 10(11), 3698—3705 |
36 | Huang S., Von Lim Y., Zhang X., Wang Y., Zheng Y., Kong D., Ding M., Yang S. A., Yang H. Y., Nano Energy, 2018, 51, 340—348 |
37 | Zhou J., Liu X., Zhu L., Zhou J., Guan Y., Chen L., Niu S., Cai J., Sun D., Zhu Y., Du J., Wang G., Qian Y., Joule, 2018, 2(12), 2681—2693 |
38 | Zhou T., Lv W., Li J., Zhou G., Zhao Y., Fan S., Liu B., Li B., Kang F., Yang Q. H., Energy Environ. Sci., 2017, 10(7), 1694—1703 |
39 | Jiao L., Zhang C., Geng C., Wu S., Li H., Lv W., Tao Y., Chen Z., Zhou G., Li J., Ling G., Wan Y., Yang Q. H., Adv. Energy Mater., 2019, 9(19), 1900219 |
40 | Song Y., Zhao W., Kong L., Zhang L., Zhu X., Shao Y., Ding F., Zhang Q., Sun J., Liu Z., Energy Environ. Sci., 2018, 11(9), 2620—2630 |
41 | Ye C., Jiao Y., Jin H., Slattery A. D., Davey K., Wang H., Qiao S. Z., Angew. Chem.Int. Ed., 2018, 57(51), 16703—16707 |
42 | Zhang B., Luo C., Deng Y., Huang Z., Zhou G., Lv W., He Y. B., Wan Y., Kang F., Yang Q. H., Adv. Energy Mater., 2020, 10(15), 2000091 |
43 | Wang R., Luo C., Wang T., Zhou G., Deng Y., He Y., Zhang Q., Kang F., Lv W., Yang Q. H., Adv. Mater., 2020, 32(32), 2000315 |
44 | Wei N., Cai J., Wang R., Wang M., Lv W., Ci H., Sun J., Liu Z., Nano Energy, 2019, 66, 104190 |
45 | Zhao M., Li B. Q., Peng H. J., Yuan H., Wei J. Y., Huang J. Q., Angew. Chem. Int. Ed., 2020, 59(31), 12636—12652 |
46 | Xie J., Li B. Q., Peng H. J., Song Y. W., Zhao M., Chen X., Zhang Q., Huang J. Q., Adv. Mater., 2019, 31(43),1903813 |
47 | Li B. Q., Kong L., Zhao C. X., Jin Q., Chen X., Peng H. J., Qin J. L., Chen J. X., Yuan H., Zhang Q., Huang J. Q., InfoMat, 2019, 1(4), 533—541 |
48 | Zhang C., Niu S., Lv W., Zhou G., Li J., Fan S., Deng Y., Pan Z., Kang F., Yang Q. H., Nano Energy, 2017, 33, 306—312 |
49 | Tao Y., Wei Y., Liu Y., Wang J., Qiao W., Ling L., Long D., Energy Environ. Sci., 2016, 9(10), 3230—3239 |
50 | Luo D., Zhang Z., Li G., Cheng S., Li S., Li J., Gao R., Li M., Sy S., Deng Y. P., Jiang Y., Zhu Y., Dou H., Hu Y., Yu A., Chen Z., ACS Nano, 2020, 14(4), 4849—4860 |
51 | Liu Y., Chen M., Su Z., Gao Y., Zhang Y., Long D., Carbon, 2021, 172, 260—271 |
52 | Wang S., Liao J., Yang X., Liang J., Sun Q., Liang J., Zhao F., Koo A., Kong F., Yao Y., Gao X., Wu X., Yang S. Z., Li R., Sun X., Nano Energy, 2019, 57, 230—240 |
53 | Huang X., Shi K., Yang J., Mao G., Chen J., J. Power Sources, 2017, 356, 72—79 |
54 | Cao K., Liu H., Li Y., Wang Y., Jiao L., Energy Storage Mater., 2017, 9, 78—84 |
55 | Kong W., Yan L., Luo Y., Wang D., Jiang K., Li Q., Fan S., Wang J., Adv. Funct. Mater., 2017, 27(18), 1606663 |
56 | Sun Z., Zhang J., Yin L., Hu G., Fang R., Cheng H. M., Li F., Nat. Commun., 2017, 8(1), 1—8 |
57 | Yang X. F., Wang A., Qiao B., Li J., Liu J., Zhang T., Acc. Chem. Res., 2013, 46(8), 1740—1748 |
58 | Chen Y., Ji S., Chen C., Peng Q., Wang D., Li Y., Joule, 2018, 2(7), 1242—1264 |
59 | Zhang H., Liu G., Shi L., Ye J., Adv. Energy Mater., 2018, 8(1), 1701343 |
60 | Wang A., Li J., Zhang T., Nature Rev. Chem., 2018, 2(6), 65—81 |
61 | Du Z., Chen X., Hu W., Chuang C., Xie S., Hu A., Yan W., Kong X., Wu X., Ji H., Wan L. J., J. Am. Chem. Soc., 2019, 141(9), 3977—3985 |
62 | Zhou G., Zhao S., Wang T., Yang S. Z., Johannessen B., Chen H., Liu C., Ye Y., Wu Y., Peng Y., Liu C., Jiang S. P., Zhang Q., Cui Y., Nano Lett., 2019, 20(2), 1252—1261 |
63 | Zhao M., Peng H. J., Wei J. Y., Huang J. Q., Li B. Q., Yuan H., Zhang Q., Small Methods, 2019, 1900344 |
64 | Luo C., Liang X., Sun Y., Lv W., Sun Y., Lu Z., Hua W., Yang H., Wang R., Yan C., Li J., Wan Y., Yang Q. H., Energy Storage Mater., 2020, 33, 290—297 |
65 | Zhao E., Nie K., Yu X., Hu Y. S., Wang F., Xiao J., Li H., Huang X., Adv. Funct. Mater., 2018, 28(38), 1707543 |
66 | Gorlin Y., Siebel A., Piana M., Huthwelker T., Jha H., Monsch G., Tromp M., J. Electrochem. Soc., 2015, 162(7), A1146 |
67 | Al Salem H., Babu G., V. Rao C., Arava L. M. R., J. Am. Chem. Soc., 2015, 137(36), 11542—11545 |
68 | Agostini M., Lee D. J., Scrosati B., Sun Y. K., Hassoun J., J. Power Sources, 2014, 265, 14—19 |
69 | Li M., Amirzadeh Z., De Marco R., Tan X. F., Small Methods, 2018, 2(11), 1800133 |
70 | Hagen M., Schiffels P., Hammer M., Dörfler S., Tübke J., Hoffmann M. J., Kaskel S., J. Electrochem. Soc., 2013, 160(8), A1205 |
71 | Zhang L., Qian T., Zhu X., Hu Z., Wang M., Zhang L., Jiang T., Tian J. H., Yan C., Chem. Soc. Rev., 2019, 48(22), 5432— 5453 |
72 | Waluś S., Barchasz C., Colin J. F., Martin J. F., Elkaïm E., Leprêtre J. C., Alloin F., Chem. Commun., 2013, 49(72), 7899— 7901 |
73 | Yan Y., Cheng C., Zhang L., Li Y., Lu J., Adv. Energy Mater., 2019, 9(18), 1900148 |
74 | Tan J., Liu D., Xu X., Mai L., Nanoscale, 2017, 9(48), 19001—19016 |
75 | Cuisinier M., Cabelguen P. E., Evers S., He G., Kolbeck M., Garsuch A., Bolin T., Balasubramanian M., Nazar L. F., J. Phy. Chem. Lett., 2013, 4(19), 3227—3232 |
76 | Xue W., Shi Z., Suo L., Wang C., Wang Z., Wang H., So L. P., Maurano A., Yu D., Chen Y., Qie, L., Zhu Z., Xu G., Kong J., Li J., Nat. Energy, 2019, 4(5), 374—382 |
77 | Lei T., Chen W., Lv W., Huang J., Zhu J., Chu J., Yan C., Wu C., Yan Y., He W., Xiong J., Li Y., Yan C., Goodenough J. B., Duan X., Joule, 2018, 2(10), 2091—2104 |
78 | Xu Z. L., Kim S. J., Chang D., Park K. Y., Dae K. S., Dao K. P., Tuk J. M., Kang K., Energy Environ. Sci., 2019, 12(10), 3144—3155 |
[1] | 韩付超, 李福进, 陈良, 贺磊义, 姜玉南, 徐守冬, 张鼎, 其鲁. CoSe2/C复合电催化材料修饰隔膜对高载量锂硫电池性能的影响[J]. 高等学校化学学报, 2022, 43(8): 20220163. |
[2] | 周雷雷, 程海洋, 赵凤玉. Pd基多相催化剂上CO2加氢反应的研究进展[J]. 高等学校化学学报, 2022, 43(7): 20220279. |
[3] | 尹肖菊, 孙逊, 赵程浩, 姜波, 赵晨阳, 张乃庆. 单原子催化剂在锂硫电池中的研究进展[J]. 高等学校化学学报, 2022, 43(5): 20220076. |
[4] | 张诗昱, 何润合, 李永兵, 魏士俊, 张兴祥. 辐照交联制备低分子量聚丙烯腈纤维锂硫电池正极材料及其储硫机理[J]. 高等学校化学学报, 2022, 43(3): 20210632. |
[5] | 陈铭苏, 张会茹, 张琪, 刘家琴, 吴玉程. 锂硫电池中钴磷共掺杂MoS2催化性能的第一性原理研究[J]. 高等学校化学学报, 2021, 42(8): 2540. |
[6] | 杨涛, 姚会影, 李青, 郝伟, 迟力峰, 朱嘉. 高催化活性M-BHT(M=Co, Cu)电催化还原CO2为CH4的密度泛函理论研究[J]. 高等学校化学学报, 2021, 42(4): 1268. |
[7] | 李锐, 孙晓刚, 邹婧怡, 何强. 含羟基磷灰石纳米线复合夹层的高性能锂硫电池[J]. 高等学校化学学报, 2020, 41(8): 1866. |
[8] | 吴桐, 丛丽娜, 孙立群, 谢海明. 氧缺位结构介孔二氧化钛/聚乙烯复合隔膜在锂硫电池中的应用[J]. 高等学校化学学报, 2020, 41(7): 1661. |
[9] | 王霞, 刘彦吉, 贾永锋, 吉磊, 胡全丽, 段莉梅, 刘景海. 含氮多孔纳米碳纤维的制备及对锂硫电池容量的提高[J]. 高等学校化学学报, 2020, 41(4): 829. |
[10] | 李新, 陈良, 马晓涛, 张鼎, 徐守冬, 周娴娴, 段东红, 刘世斌. V2O3空心球的制备及在锂硫电池中的应用[J]. 高等学校化学学报, 2019, 40(9): 1972. |
[11] | 官亦标, 李万隆, 谢潇怡, 曲薇, 沈进冉, 傅凯, 郭翠静, 周淑琴, 范红家, 褚永金, 陈人杰. TiO2/CNTs复合材料涂覆隔膜的制备及在锂硫电池中的应用[J]. 高等学校化学学报, 2019, 40(3): 536. |
[12] | 黄雅盼, 孙晓刚, 李锐, 梁国东, 魏成成, 胡浩. 三(2-羧乙基)膦阻隔层对锂硫电池穿梭效应的抑制[J]. 高等学校化学学报, 2019, 40(11): 2375. |
[13] | 王杰, 孙晓刚, 陈玮, 李旭, 黄雅盼, 魏成成, 胡浩, 梁国东. 羟基化多壁碳纳米管三明治隔膜对锂硫电池电化学性能的改善[J]. 高等学校化学学报, 2018, 39(8): 1782. |
[14] | 杨冬伟, 李露, 王琴, 王晓春, 李青远, 施锦. 离子液体在CO2电还原反应过程中的催化作用与机理研究[J]. 高等学校化学学报, 2016, 37(1): 94. |
[15] | 潘文博, 李明雪, 苏亚琼, 吴德印, 田中群. 锂硫电池中碳酸乙烯酯与硫簇反应拉曼光谱的理论研究[J]. 高等学校化学学报, 2015, 36(9): 1771. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||