高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (1): 49.doi: 10.7503/cjcu20190570
收稿日期:2019-11-04
出版日期:2020-01-10
发布日期:2019-11-26
通讯作者:
刘梦溪,裘晓辉
E-mail:liumx@nanoctr.cn;xhqiu@nanoctr.cn
基金资助:
LI Shichao1,2,LIU Mengxi1,*(
),QIU Xiaohui1,2,*(
)
Received:2019-11-04
Online:2020-01-10
Published:2019-11-26
Contact:
Mengxi LIU,Xiaohui QIU
E-mail:liumx@nanoctr.cn;xhqiu@nanoctr.cn
Supported by:摘要:
识别和解析石墨烯中缺陷的精确原子结构是研究不同类型缺陷的物化特性, 实现石墨烯物性调控的前提, 可以为在原子尺度研究石墨烯缺陷的构效关系提供重要的实验依据. 本文结合扫描隧道显微镜(STM)和原子力显微镜(AFM)确认了在Ir(111)表面生长的石墨烯中自发形成的缺陷, 以及通过离子轰击方法在石墨烯中引入的多种缺陷结构, 包括单空位缺陷、 非六元环拓扑结构以及石墨烯层下的基底缺陷.
中图分类号:
TrendMD:
李世超,刘梦溪,裘晓辉. Ir(111)表面石墨烯中缺陷的原子结构确认. 高等学校化学学报, 2020, 41(1): 49.
LI Shichao,LIU Mengxi,QIU Xiaohui. Structural Ide.pngication of Defects on Graphene/Ir(111) †. Chem. J. Chinese Universities, 2020, 41(1): 49.
Fig.1 Moiré patterns of graphene grown on Ir(111) (A) Large-scale STM image of graphene on Ir(111); (B) Zoom-in STM image of the region indicated by the white square in (A); (C) the corresponding AFM image of (B); (D) dI/dV measurement on graphene recorded at the location indicated by the green dot in (A). Scan parameter: (A) -600 mV, 50 pA; (B) 1 V, 100 pA; (C) 0 V.
Fig.2 Defects in graphene created by ion sputtering (A) STM image of graphene on Ir(111) after Ar+ sputtering; (B) STM image of the graphene sample shown in(A) after annealing at 640 ℃; (C) STM image of graphene on Ir(111) after He+ sputtering; (D) STM image of the sample shown in (C) after annealing at 640 ℃. Scan parameter: (A) -30 mV, 500 pA; (B) -73 mV, 400 pA; (C) -6 mV, 1.5 nA; (D) -60 mV, 1.2 nA.
Fig.3 Substrate defect under graphene (A) STM image of graphene with defect located on the underlying Ir substrate(-1 mV, 900 pA); (B) the corresponding AFM image of (A) showing the seamless honeycomb lattices of graphene.
Fig.4 Single vacancies in graphene on Ir(111) (A) STM image of graphene on Ir(111) with three vacancies(-1 mV, 1 nA); (B) the corresponding AFM image of (A); (C) zoom-in image of the area indicated by the red square in (B), with the structural model superimposed; (D) force curves taken at a carbon site(a) and a vacancy site(b).
Fig.5 Nonhexagonal topological defect in graphene (A) STM image(-509 mV, 40 pA); (B) the corresponding AFM image of graphene involving pentagons and heptagons; (C) laplace filtered image of (B), with structural model superimposed.
| [1] |
Novoselov K. S ., Geim A. K.,Morozov S. V.,Jiang D.,Zhang Y.,Dubonos S. V.,Grigorieva I. V.,Firsov A. A.,. Science, 2004,306, 666— 669
doi: 10.1126/science.1102896 URL pmid: 15499015 |
| [2] |
Balandin A. A ., Ghosh S.,Bao W.,Calizo I.,Teweldebrhan D.,Miao F.,Lau C. N., . Nano Lett., 2008,8, 902— 907
doi: 10.1021/nl0731872 URL pmid: 18284217 |
| [3] |
Bolotin K. I ., Sikes K. J.,Jiang Z.,Klima M.,Fudenberg G.,Hone J.,Kim P.,Stormer H. L., . Solid State Commun., 2008,146, 351— 355
doi: 10.1016/j.ssc.2008.02.024 URL |
| [4] |
Du X., Skachko I., Barker A., Andrei E. Y ., Nat. Nanotechnol., 2008,3, 491— 495
doi: 10.1038/nnano.2008.199 URL pmid: 18685637 |
| [5] |
Haskins J., Kınacı A., Sevik C., Sevinçli H., Cuniberti G., Ça$\check{g}$ın T., . ACS Nano, 2011,5, 3779— 3787
doi: 10.1021/nn200114p URL pmid: 21452884 |
| [6] |
Kawai S., Saito S., Osumi S., Yamaguchi S., Foster A. S ., Spijker P.,Meyer E., Nat. Commun., 2015,6, 8098— 8103
doi: 10.1038/ncomms9098 URL pmid: 26302943 |
| [7] |
Binnig G., Rohrer H., Surf. Sci., 1983,126, 236— 244
doi: 10.1016/0039-6028(83)90716-1 URL |
| [8] |
Feenstra R. M ., Stroscio J. A.,Fein A. P., Surf. Sci., 1987,181, 295— 306
doi: 10.1016/0039-6028(87)90170-1 URL |
| [9] |
Giessibl F. J ., Rev. Mod. Phys., 2003,75, 949— 983
doi: 10.1103/RevModPhys.75.949 URL |
| [10] |
Giessibl F. J ., Appl. Phys. Lett., 1998,73, 3956— 3958
doi: 10.1063/1.122948 URL |
| [11] |
Bartels L., Meyer G., Rieder K. H ., Velic D.,Knoesel E.,Hotzel A.,Wolf M.,Ertl G., Phys. Rev. Lett., 1998,80, 2004— 2007
doi: 10.1103/PhysRevLett.80.2004 URL |
| [12] |
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G ., Science, 2009,325, 1110— 1114
doi: 10.1126/science.1176210 URL pmid: 19713523 |
| [13] |
Gross L., Mohn F., Moll N., Schuler B., Criado A., Guitian E., Pena D., Gourdon A., Meyer G ., Science, 2012,337, 1326— 1329
doi: 10.1126/science.1225621 URL pmid: 22984067 |
| [14] |
Zhang J., Chen P. C ., Yuan B. K.,Ji W.,Cheng Z. H.,Qiu X. H., Science, 2013,342, 611— 614
doi: 10.1126/science.1242603 URL |
| [15] |
Liu M. X ., Li Y. C.,Chen P. C.,Sun J. Y.,Ma D. L.,Li Q. C.,Gao T.,Gao Y. B.,Cheng Z. H.,Qiu X. H.,Fang Y.,Zhang Y. F.,Liu Z. F., Nano Lett., 2014,14, 6342— 6347
doi: 10.1021/nl502780u URL pmid: 25268563 |
| [16] |
Coraux J., N‘Diaye A. T.,Busse C.,Michely T., Nano Lett., 2008,8, 565— 570
doi: 10.1021/nl0728874 URL pmid: 18189442 |
| [17] |
Wang Y., Ye Y., Wu K., Surf. Sci., 2006,600, 729— 734
doi: 10.1016/j.susc.2005.12.001 URL |
| [18] |
Biedermann L. B ., Bolen M. L.,Capano M. A.,Zemlyanov D.,Reifenberger R. G., Phys. Rev. B, 2009,79, 125411— 125420
doi: 10.1103/PhysRevB.79.125411 URL |
| [19] |
Usachov D., Fedorov A., Vilkov O., Adamchuk V. K ., Yashina L. V.,Bondarenko L.,Saranin A. A.,Grüneis A.,Vyalikh D. V., Phys. Rev. B, 2012,86, 155151— 155159
doi: 10.1103/PhysRevB.86.155151 URL |
| [20] |
Ugeda M. M ., Fernandez-Torre D.,Brihuega I.,Pou P.,Martinez-Galera A. J.,Perez R.,Gomez-Rodriguez J. M., Phys. Rev. Lett., 2011,107, 116803— 116807
doi: 10.1103/PhysRevLett.107.116803 URL pmid: 22026692 |
| [21] |
Chen J. H ., Cullen W. G.,Jang C.,Fuhrer M. S.,Williams E. D., Phys. Rev. Lett., 2009,102, 236805— 236808
doi: 10.1103/PhysRevLett.102.236805 URL pmid: 19658959 |
| [22] |
Georgiou T., Britnell L., Blake P., Gorbachev R. V ., Gholinia A.,Geim A. K.,Casiraghi C.,Novoselov K. S., Appl. Phys. Lett., 2011,99, 093103— 093105
doi: 10.1063/1.3631632 URL |
| [23] |
Wang L., Zhang X., Chan H. L. W ., Yan F.,Ding F., J. Am. Chem. Soc., 2013,135, 4476— 4482
doi: 10.1021/ja312687a URL pmid: 23444843 |
| [24] |
González-Herrero H., Gómez-Rodríguez J. M ., Mallet P.,Moaied M.,Palacios J. J.,Salgado C.,Ugeda M. M.,Veuillen J. Y.,Yndurain F.,Brihuega I.,. Science, 2016,352, 437— 441
doi: 10.1126/science.aad8038 URL pmid: 27102478 |
| [25] |
Zhao L. Y ., He R.,Rim K. T.,Schiros T.,Kim K. S.,Zhou H.,Gutierrez C.,Chockalingam S. P.,Arguello C. J.,Palova L.,Nordlund D.,Hybertsen M. S.,Reichman D. R.,Heinz T. F.,Kim P.,Pinczuk A.,Flynn G. W.,Pasupathy A. N.,. Science, 2011,333, 999— 1003
doi: 10.1126/science.1207239 URL |
| [26] | Kawai S., Nakatsuka S., Hatakeyama T., Pawlak R., Meier T., Tracey J., Meyer E., Foster A. S., Science Adv., 2018, 4,. eaar718—eaar7187 |
| [27] |
Stone A. J ., Wales D. J., Chem. Phys. Lett., 1986,128, 501— 503
doi: 10.1016/0009-2614(86)80661-3 URL |
| [28] |
Lahiri J., Lin Y., Bozkurt P., Oleynik I. I ., Batzill M., Nat. Nanotechnol., 2010,5, 326— 329
doi: 10.1038/nnano.2010.53 URL pmid: 20348912 |
| [29] |
Ma C., Sun H., Zhao Y., Li B., Li Q., Zhao A., Wang X., Luo Y., Yang J., Wang B., Hou J. G ., Phys. Rev. Lett., 2014,112, 226802— 226806
doi: 10.1103/PhysRevLett.112.226802 URL pmid: 24949783 |
| [1] | 王瑞娜, 孙瑞粉, 钟添华, 池毓务. 大尺寸石墨烯量子点组装体的制备及电化学发光性能[J]. 高等学校化学学报, 2022, 43(8): 20220161. |
| [2] | 闫嘉森, 韩现英, 党兆涵, 李建刚, 何向明. 石蜡/膨胀石墨/石墨烯复合相变储热材料的制备及性能[J]. 高等学校化学学报, 2022, 43(6): 20220054. |
| [3] | 曹磊, 陈美君, 袁刚, 常钢, 张修华, 王升富, 何汉平. 冠醚功能化的栅控石墨烯场效应晶体管的制备及对汞离子的检测[J]. 高等学校化学学报, 2022, 43(4): 20210688. |
| [4] | 郑雪莲, 杨翠翠, 田维全. 全椅式边含薁缺陷石墨烯纳米片的二阶非线性光学性质[J]. 高等学校化学学报, 2022, 43(3): 20210806. |
| [5] | 杨隽阁, 高成乾, 李博鑫, 尹德忠. 改性氧化石墨烯稳定Pickering乳液法制备高导热相变整体材料[J]. 高等学校化学学报, 2022, 43(2): 20210593. |
| [6] | 张志博, 尚涵, 徐文轩, 韩广东, 崔金声, 杨皓然, 李瑞鑫, 张生辉, 徐欢. 氧化石墨烯插层聚β-羟基丁酸酯复合材料的结晶形态与宏观性能[J]. 高等学校化学学报, 2022, 43(2): 20210566. |
| [7] | 胡波, 朱昊辰. 双层氧化石墨烯纳米体系中受限水的介电常数[J]. 高等学校化学学报, 2022, 43(2): 20210614. |
| [8] | 俞彬, 谌小燕, 赵越, 陈卫昌, 肖新颜, 刘海洋. 氧化石墨烯基钴卟啉复合材料的电催化析氢反应[J]. 高等学校化学学报, 2022, 43(2): 20210549. |
| [9] | 王雪丽, 宋相伟, 解颜宁, 杜妮阳, 王振新. 部分还原氧化石墨烯的制备、 表征及对人宫颈癌HeLa细胞的体外杀伤作用[J]. 高等学校化学学报, 2022, 43(2): 20210595. |
| [10] | 姜珊, 申倩倩, 李琦, 贾虎生, 薛晋波. Pd增强缺陷态TiO2纳米管阵列的光催化产氢性能[J]. 高等学校化学学报, 2022, 43(10): 20220206. |
| [11] | 高中楠, 郭丽红, 赵东越, 李新刚. A位缺陷对La-Sr-Co-O钙钛矿结构和催化氧化性能的影响[J]. 高等学校化学学报, 2021, 42(9): 2869. |
| [12] | 马丽娟, 高升启, 荣祎斐, 贾建峰, 武海顺. Sc, Ti, V修饰B/N掺杂单缺陷石墨烯的储氢研究[J]. 高等学校化学学报, 2021, 42(9): 2842. |
| [13] | 朱德帅, 赵剑英, 杨正慧, 郭海泉, 高连勋. 基于多层结构设计的高储能密度氧化石墨烯/聚酰亚胺复合材料[J]. 高等学校化学学报, 2021, 42(8): 2694. |
| [14] | 黄珊, 姚建东, 宁淦, 肖琦, 刘义. 石墨烯量子点荧光探针对碱性磷酸酶活性的高效检测[J]. 高等学校化学学报, 2021, 42(8): 2412. |
| [15] | 胡伟, 刘小峰, 李震宇, 杨金龙. 金刚石纳米线氮空位色心的表面与尺寸效应[J]. 高等学校化学学报, 2021, 42(7): 2178. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||