高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (1): 49-55.doi: 10.7503/cjcu20190570
收稿日期:
2019-11-04
出版日期:
2020-01-10
发布日期:
2019-11-26
通讯作者:
刘梦溪,裘晓辉
E-mail:liumx@nanoctr.cn;xhqiu@nanoctr.cn
基金资助:
LI Shichao1,2,LIU Mengxi1,*(),QIU Xiaohui1,2,*(
)
Received:
2019-11-04
Online:
2020-01-10
Published:
2019-11-26
Contact:
Mengxi LIU,Xiaohui QIU
E-mail:liumx@nanoctr.cn;xhqiu@nanoctr.cn
Supported by:
摘要:
识别和解析石墨烯中缺陷的精确原子结构是研究不同类型缺陷的物化特性, 实现石墨烯物性调控的前提, 可以为在原子尺度研究石墨烯缺陷的构效关系提供重要的实验依据. 本文结合扫描隧道显微镜(STM)和原子力显微镜(AFM)确认了在Ir(111)表面生长的石墨烯中自发形成的缺陷, 以及通过离子轰击方法在石墨烯中引入的多种缺陷结构, 包括单空位缺陷、 非六元环拓扑结构以及石墨烯层下的基底缺陷.
中图分类号:
李世超,刘梦溪,裘晓辉. Ir(111)表面石墨烯中缺陷的原子结构确认[J]. 高等学校化学学报, 2020, 41(1): 49-55.
LI Shichao,LIU Mengxi,QIU Xiaohui. Structural Ide.pngication of Defects on Graphene/Ir(111) †[J]. Chemical Journal of Chinese Universities, 2020, 41(1): 49-55.
Fig.1 Moiré patterns of graphene grown on Ir(111) (A) Large-scale STM image of graphene on Ir(111); (B) Zoom-in STM image of the region indicated by the white square in (A); (C) the corresponding AFM image of (B); (D) dI/dV measurement on graphene recorded at the location indicated by the green dot in (A). Scan parameter: (A) -600 mV, 50 pA; (B) 1 V, 100 pA; (C) 0 V.
Fig.2 Defects in graphene created by ion sputtering (A) STM image of graphene on Ir(111) after Ar+ sputtering; (B) STM image of the graphene sample shown in(A) after annealing at 640 ℃; (C) STM image of graphene on Ir(111) after He+ sputtering; (D) STM image of the sample shown in (C) after annealing at 640 ℃. Scan parameter: (A) -30 mV, 500 pA; (B) -73 mV, 400 pA; (C) -6 mV, 1.5 nA; (D) -60 mV, 1.2 nA.
Fig.3 Substrate defect under graphene (A) STM image of graphene with defect located on the underlying Ir substrate(-1 mV, 900 pA); (B) the corresponding AFM image of (A) showing the seamless honeycomb lattices of graphene.
Fig.4 Single vacancies in graphene on Ir(111) (A) STM image of graphene on Ir(111) with three vacancies(-1 mV, 1 nA); (B) the corresponding AFM image of (A); (C) zoom-in image of the area indicated by the red square in (B), with the structural model superimposed; (D) force curves taken at a carbon site(a) and a vacancy site(b).
Fig.5 Nonhexagonal topological defect in graphene (A) STM image(-509 mV, 40 pA); (B) the corresponding AFM image of graphene involving pentagons and heptagons; (C) laplace filtered image of (B), with structural model superimposed.
[1] |
Novoselov K. S ., Geim A. K.,Morozov S. V.,Jiang D.,Zhang Y.,Dubonos S. V.,Grigorieva I. V.,Firsov A. A.,. Science, 2004,306, 666— 669
doi: 10.1126/science.1102896 URL pmid: 15499015 |
[2] |
Balandin A. A ., Ghosh S.,Bao W.,Calizo I.,Teweldebrhan D.,Miao F.,Lau C. N., . Nano Lett., 2008,8, 902— 907
doi: 10.1021/nl0731872 URL pmid: 18284217 |
[3] |
Bolotin K. I ., Sikes K. J.,Jiang Z.,Klima M.,Fudenberg G.,Hone J.,Kim P.,Stormer H. L., . Solid State Commun., 2008,146, 351— 355
doi: 10.1016/j.ssc.2008.02.024 URL |
[4] |
Du X., Skachko I., Barker A., Andrei E. Y ., Nat. Nanotechnol., 2008,3, 491— 495
doi: 10.1038/nnano.2008.199 URL pmid: 18685637 |
[5] |
Haskins J., Kınacı A., Sevik C., Sevinçli H., Cuniberti G., Ça$\check{g}$ın T., . ACS Nano, 2011,5, 3779— 3787
doi: 10.1021/nn200114p URL pmid: 21452884 |
[6] |
Kawai S., Saito S., Osumi S., Yamaguchi S., Foster A. S ., Spijker P.,Meyer E., Nat. Commun., 2015,6, 8098— 8103
doi: 10.1038/ncomms9098 URL pmid: 26302943 |
[7] |
Binnig G., Rohrer H., Surf. Sci., 1983,126, 236— 244
doi: 10.1016/0039-6028(83)90716-1 URL |
[8] |
Feenstra R. M ., Stroscio J. A.,Fein A. P., Surf. Sci., 1987,181, 295— 306
doi: 10.1016/0039-6028(87)90170-1 URL |
[9] |
Giessibl F. J ., Rev. Mod. Phys., 2003,75, 949— 983
doi: 10.1103/RevModPhys.75.949 URL |
[10] |
Giessibl F. J ., Appl. Phys. Lett., 1998,73, 3956— 3958
doi: 10.1063/1.122948 URL |
[11] |
Bartels L., Meyer G., Rieder K. H ., Velic D.,Knoesel E.,Hotzel A.,Wolf M.,Ertl G., Phys. Rev. Lett., 1998,80, 2004— 2007
doi: 10.1103/PhysRevLett.80.2004 URL |
[12] |
Gross L., Mohn F., Moll N., Liljeroth P., Meyer G ., Science, 2009,325, 1110— 1114
doi: 10.1126/science.1176210 URL pmid: 19713523 |
[13] |
Gross L., Mohn F., Moll N., Schuler B., Criado A., Guitian E., Pena D., Gourdon A., Meyer G ., Science, 2012,337, 1326— 1329
doi: 10.1126/science.1225621 URL pmid: 22984067 |
[14] |
Zhang J., Chen P. C ., Yuan B. K.,Ji W.,Cheng Z. H.,Qiu X. H., Science, 2013,342, 611— 614
doi: 10.1126/science.1242603 URL |
[15] |
Liu M. X ., Li Y. C.,Chen P. C.,Sun J. Y.,Ma D. L.,Li Q. C.,Gao T.,Gao Y. B.,Cheng Z. H.,Qiu X. H.,Fang Y.,Zhang Y. F.,Liu Z. F., Nano Lett., 2014,14, 6342— 6347
doi: 10.1021/nl502780u URL pmid: 25268563 |
[16] |
Coraux J., N‘Diaye A. T.,Busse C.,Michely T., Nano Lett., 2008,8, 565— 570
doi: 10.1021/nl0728874 URL pmid: 18189442 |
[17] |
Wang Y., Ye Y., Wu K., Surf. Sci., 2006,600, 729— 734
doi: 10.1016/j.susc.2005.12.001 URL |
[18] |
Biedermann L. B ., Bolen M. L.,Capano M. A.,Zemlyanov D.,Reifenberger R. G., Phys. Rev. B, 2009,79, 125411— 125420
doi: 10.1103/PhysRevB.79.125411 URL |
[19] |
Usachov D., Fedorov A., Vilkov O., Adamchuk V. K ., Yashina L. V.,Bondarenko L.,Saranin A. A.,Grüneis A.,Vyalikh D. V., Phys. Rev. B, 2012,86, 155151— 155159
doi: 10.1103/PhysRevB.86.155151 URL |
[20] |
Ugeda M. M ., Fernandez-Torre D.,Brihuega I.,Pou P.,Martinez-Galera A. J.,Perez R.,Gomez-Rodriguez J. M., Phys. Rev. Lett., 2011,107, 116803— 116807
doi: 10.1103/PhysRevLett.107.116803 URL pmid: 22026692 |
[21] |
Chen J. H ., Cullen W. G.,Jang C.,Fuhrer M. S.,Williams E. D., Phys. Rev. Lett., 2009,102, 236805— 236808
doi: 10.1103/PhysRevLett.102.236805 URL pmid: 19658959 |
[22] |
Georgiou T., Britnell L., Blake P., Gorbachev R. V ., Gholinia A.,Geim A. K.,Casiraghi C.,Novoselov K. S., Appl. Phys. Lett., 2011,99, 093103— 093105
doi: 10.1063/1.3631632 URL |
[23] |
Wang L., Zhang X., Chan H. L. W ., Yan F.,Ding F., J. Am. Chem. Soc., 2013,135, 4476— 4482
doi: 10.1021/ja312687a URL pmid: 23444843 |
[24] |
González-Herrero H., Gómez-Rodríguez J. M ., Mallet P.,Moaied M.,Palacios J. J.,Salgado C.,Ugeda M. M.,Veuillen J. Y.,Yndurain F.,Brihuega I.,. Science, 2016,352, 437— 441
doi: 10.1126/science.aad8038 URL pmid: 27102478 |
[25] |
Zhao L. Y ., He R.,Rim K. T.,Schiros T.,Kim K. S.,Zhou H.,Gutierrez C.,Chockalingam S. P.,Arguello C. J.,Palova L.,Nordlund D.,Hybertsen M. S.,Reichman D. R.,Heinz T. F.,Kim P.,Pinczuk A.,Flynn G. W.,Pasupathy A. N.,. Science, 2011,333, 999— 1003
doi: 10.1126/science.1207239 URL |
[26] | Kawai S., Nakatsuka S., Hatakeyama T., Pawlak R., Meier T., Tracey J., Meyer E., Foster A. S., Science Adv., 2018, 4,. eaar718—eaar7187 |
[27] |
Stone A. J ., Wales D. J., Chem. Phys. Lett., 1986,128, 501— 503
doi: 10.1016/0009-2614(86)80661-3 URL |
[28] |
Lahiri J., Lin Y., Bozkurt P., Oleynik I. I ., Batzill M., Nat. Nanotechnol., 2010,5, 326— 329
doi: 10.1038/nnano.2010.53 URL pmid: 20348912 |
[29] |
Ma C., Sun H., Zhao Y., Li B., Li Q., Zhao A., Wang X., Luo Y., Yang J., Wang B., Hou J. G ., Phys. Rev. Lett., 2014,112, 226802— 226806
doi: 10.1103/PhysRevLett.112.226802 URL pmid: 24949783 |
[1] | 杜芳林, 吴冰昕, 刘娇, 徐聪聪, 李国锋, 王兴. 石墨烯基海绵在止血领域的研究进展[J]. 高等学校化学学报, 2021, 42(Album-4): 1-11. |
[2] | 黄东雪, 章颖, 曾婷, 张媛媛, 万其进, 杨年俊. 基于过渡金属硫化物/还原氧化石墨烯复合物的高性能超级电容器[J]. 高等学校化学学报, 2021, 42(Album-3): 1-11. |
[3] | 陈晓煜, 于然波. 纳米二硫化钼的掺杂及催化电解水产氢的研究进展[J]. 高等学校化学学报, 2021, 42(Album-3): 1-17. |
[4] | 沙卉雯, 马维廷, 周晓娟, 宋卫星. 激光诱导三维网状石墨烯的一步法制备及应用[J]. 高等学校化学学报, 2021, 42(Album-3): 1-8. |
[5] | 刘瀚林, 尹琳琳, 陈西凤, 李国栋. 氧化铟基纳米催化剂用于二氧化碳选择性加氢的研究进展[J]. 高等学校化学学报, 2021, 42(Album-2): 1-16. |
[6] | 曹芷源, 孙慧, 苏彬. 量子点电化学发光研究进展及展望[J]. 高等学校化学学报, 2020, 41(9): 1945-1955. |
[7] | 王博蔚, 马瑞, 吴凡, 刘志辉, 李凌锋, 张骁, 刘定坤, 杨楠, 李美慧, 杨德峰, 孙琪. 氧化石墨烯-海藻酸钠-壳聚糖复合支架的制备及表征[J]. 高等学校化学学报, 2020, 41(9): 2099-2106. |
[8] | 张国强, 孙宇辰, 史亚波, 郑华艳, 李忠, 上官炬, 刘守军, 史鹏政. Ce1-xMnxO2表面性质对催化CO2和甲醇直接合成DMC反应活性的影响[J]. 高等学校化学学报, 2020, 41(9): 2061-2069. |
[9] | 张卫国, 范松华, 王宏智, 姚素薇. α-Fe2O3/石墨烯水凝胶复合材料的自组装制备及电化学性能[J]. 高等学校化学学报, 2020, 41(8): 1850-1858. |
[10] | 陈砚田, 郄晗彤, 张胤杰, 周彩吉, 谭笑, 林爱军. 还原氧化石墨烯负载零价铁的合成及对TNT废水处理[J]. 高等学校化学学报, 2020, 41(8): 1836-1842. |
[11] | 王非凡, 王松博, 姚柯奕, 张蕾, 杜威, 程鹏高, 张建平, 唐娜. 量子点自修饰TiO2p-n同质结的构建及光催化性能[J]. 高等学校化学学报, 2020, 41(7): 1615-1624. |
[12] | 张晓菲, 武烈, 李姗姗, 朱曼毓, 程晓伟, 姜秀娥. 磷脂膜的相行为对氧化石墨烯与磷脂膜相互作用的影响[J]. 高等学校化学学报, 2020, 41(4): 661-669. |
[13] | 计天溢, 刘晓旭, 赵九蓬, 李垚. 三维交联石墨烯纳米纤维的合成及储锂性能[J]. 高等学校化学学报, 2020, 41(4): 821-828. |
[14] | 方明亮,刘东,胡美韶,王雷. 高支化梳型聚芳醚砜/咪唑鎓盐功能化氧化石墨烯阴离子交换复合膜的制备与性能[J]. 高等学校化学学报, 2020, 41(2): 365-374. |
[15] | 李明,崔小倩,汪璇,李在均. 双亲性石墨烯量子点的合成及对L-薄荷醇的缓释作用[J]. 高等学校化学学报, 2020, 41(2): 324-330. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||