高等学校化学学报 ›› 2020, Vol. 41 ›› Issue (2): 253-261.doi: 10.7503/cjcu20190493
收稿日期:
2019-09-16
出版日期:
2020-02-10
发布日期:
2019-10-29
通讯作者:
李夏
E-mail:xiali@cnu.edu.cn
基金资助:
LIU Dongmei,SU Yajing,LI Shanshan,XU Qiwei,LI Xia()
Received:
2019-09-16
Online:
2020-02-10
Published:
2019-10-29
Contact:
Xia LI
E-mail:xiali@cnu.edu.cn
Supported by:
摘要:
采用水热法合成了4个配位聚合物[Zn(Hcpoia)(2,2'-bpy)·H2O]n(1)和[M(Hcpoia)(phen)]n·nH2O[M=Zn(2), Mn(3), Co(4); H3cpoia=4-(4-羧基苯氧基)间苯二甲酸; 2,2'-bpy=2,2'-联吡啶; phen=1,10-邻菲罗啉], 利用X射线单晶衍射分析确定了配合物的晶体结构. 配合物1为一维链状结构, 中心Zn 2+离子的配位环境为[ZnO4N2]扭曲的八面体构型, 配体Hcpoia 2-以μ1∶η 1η 0和μ1∶η 1η 1配位模式桥连相邻的Zn 2+离子. 配合物2和4的结构与配合物1类似, 是由配体Hcpoia 2-以μ1∶η 1η 0和μ1∶η 1η 1配位模式联接[MO4N2]结构单元而形成的一维链状结构. 配合物1, 2和4中均存在分子间氢键(O—H…O), 氢键的存在使一维链连接形成二维超分子结构. 配合物3为二维网状结构, Mn 2+离子的配位环境为[MnO4N2]扭曲的八面体构型, 配体Hcpoia 2-以μ2∶η 1η 1配位模式桥连相邻Mn 2+离子形成[Mn2COO2]结构单元, 该结构单元被Hcpoia 2-连接形成二维结构. 在4个配合物中, 2,2'-bpy和phen配体均以端基的形式与金属离子螯合配位. 研究了水溶液中抗生素分子和Fe 3+离子对配合物1与荧光强度的影响, 实验结果表明, 甲硝唑、 Fe 3+离子对配合物1有荧光猝灭作用, 并进一步考察了甲硝唑浓度和Fe 3+离子浓度对配合物1荧光强度的影响. 基于荧光猝灭机理, 配合物1可以用作荧光传感器检测水溶液中的甲硝唑和Fe 3+离子. 研究了配合物4对罗丹明B(RhB)的催化降解性能, 发现在氙灯照射和H2O2存在条件下, 配合物4对RhB具有较好的光催化降解作用.
中图分类号:
刘东枚,苏雅静,李姗姗,许奇炜,李夏. 4-(4-羧基苯氧基)间苯二甲酸构筑的过渡金属配位聚合物: 合成、 晶体结构、 荧光传感与光催化[J]. 高等学校化学学报, 2020, 41(2): 253-261.
LIU Dongmei,SU Yajing,LI Shanshan,XU Qiwei,LI Xia. Transition Metal Coordination Polymers Constructed by 4-(4-Carboxyphenoxy)isophthalic Acid: Synthesis, Crystal Structure, Fluorescence Sensing and Photocatalysis †[J]. Chemical Journal of Chinese Universities, 2020, 41(2): 253-261.
Complex | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Empirical formula | C25H18N2O8Zn | C27H18N2O8Zn | C27H18MnN2O8 | C54H36Co2N4O16 |
Formula weight | 539.78 | 563.80 | 553.37 | 1114.73 |
Crystal system | Triclinic | Triclinic | Monoclinic | Triclinic |
Space group | P | P | P21/c | P |
a/nm | 0.97529(7) | 0.99103(5) | 1.42226(4) | 0.97396(3) |
b/nm | 1.01915(5) | 1.00828(5) | 1.09657(3) | 1.00174(3) |
c/nm | 1.34860(6) | 1.40052(6) | 1.53718(5) | 1.38980(4) |
α/(°) | 69.525(4) | 96.263(2) | 90 | 97.159(2) |
β/(°) | 89.020(5) | 106.8670(10) | 96.0640(10) | 107.019 |
γ/(°) | 68.440(6) | 110.7200(10) | 90 | 107.595 |
Volume/nm3 | 1.1583(12) | 1.2171(10) | 2.3840(12) | 1.2017(7) |
Z | 2 | 2 | 4 | 1 |
Dcalcd/(g·cm-3) | 1.548 | 1.538 | 1.542 | 1.540 |
F(000) | 552.0 | 576.0 | 1132.0 | 570 |
Crystal size/mm3 | 0.25×0.23×0.21 | 0.21×0.25×0.23 | 0.32×0.25×0.14 | 0.15×0.1×0.05 |
2θ range for data collection/(°) | 9.832—133.2 | 4.632—52.744 | 4.572—55.014 | 9.526—133.192 |
Index range | -11≤h≤11, | -11≤h≤11, | -16≤h≤18, | -6≤h≤11 |
-12≤k≤11, | -11≤k≤11, | -14≤k≤14, | -12≤k≤11, | |
-15≤l≤16 | -14≤l≤16 | -19≤l≤19 | -16≤l≤17 | |
Reflections collected | 9868 | 11800 | 27932 | 13362 |
Independent reflections | 3999[Rint=0.0914] | 4166[Rint=0.0197] | 5473[Rint=0.0480] | 4700[Rint=0.0619] |
Data/restraints/parameters | 3999/0/327 | 4166/7/345 | 5473/1/345 | 4700/0/345 |
Goodness-of-fit on F2 | 1.113 | 1.063 | 1.084 | 1.113 |
Final R indexes[I≥2σ(I)] | R1=0.0851, | R1=0.0334, | R1=0.0619, | R1=0.0547, |
wR2=0.2576 | wR2=0.0847 | wR2=0.1583 | wR2=0.1582 | |
Final R indexes(all data) | R1=0.0952, | R1=0.0386, | R1=0.0963, | R1=0.0560, |
wR2=0.2929 | wR2=0.0875 | wR2=0.1747 | wR2=0.1593 | |
CCDC No. | 1943993 | 1943994 | 1943992 | 1943991 |
Table 1 Crystallographic data of complexes 1—4
Complex | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Empirical formula | C25H18N2O8Zn | C27H18N2O8Zn | C27H18MnN2O8 | C54H36Co2N4O16 |
Formula weight | 539.78 | 563.80 | 553.37 | 1114.73 |
Crystal system | Triclinic | Triclinic | Monoclinic | Triclinic |
Space group | P | P | P21/c | P |
a/nm | 0.97529(7) | 0.99103(5) | 1.42226(4) | 0.97396(3) |
b/nm | 1.01915(5) | 1.00828(5) | 1.09657(3) | 1.00174(3) |
c/nm | 1.34860(6) | 1.40052(6) | 1.53718(5) | 1.38980(4) |
α/(°) | 69.525(4) | 96.263(2) | 90 | 97.159(2) |
β/(°) | 89.020(5) | 106.8670(10) | 96.0640(10) | 107.019 |
γ/(°) | 68.440(6) | 110.7200(10) | 90 | 107.595 |
Volume/nm3 | 1.1583(12) | 1.2171(10) | 2.3840(12) | 1.2017(7) |
Z | 2 | 2 | 4 | 1 |
Dcalcd/(g·cm-3) | 1.548 | 1.538 | 1.542 | 1.540 |
F(000) | 552.0 | 576.0 | 1132.0 | 570 |
Crystal size/mm3 | 0.25×0.23×0.21 | 0.21×0.25×0.23 | 0.32×0.25×0.14 | 0.15×0.1×0.05 |
2θ range for data collection/(°) | 9.832—133.2 | 4.632—52.744 | 4.572—55.014 | 9.526—133.192 |
Index range | -11≤h≤11, | -11≤h≤11, | -16≤h≤18, | -6≤h≤11 |
-12≤k≤11, | -11≤k≤11, | -14≤k≤14, | -12≤k≤11, | |
-15≤l≤16 | -14≤l≤16 | -19≤l≤19 | -16≤l≤17 | |
Reflections collected | 9868 | 11800 | 27932 | 13362 |
Independent reflections | 3999[Rint=0.0914] | 4166[Rint=0.0197] | 5473[Rint=0.0480] | 4700[Rint=0.0619] |
Data/restraints/parameters | 3999/0/327 | 4166/7/345 | 5473/1/345 | 4700/0/345 |
Goodness-of-fit on F2 | 1.113 | 1.063 | 1.084 | 1.113 |
Final R indexes[I≥2σ(I)] | R1=0.0851, | R1=0.0334, | R1=0.0619, | R1=0.0547, |
wR2=0.2576 | wR2=0.0847 | wR2=0.1583 | wR2=0.1582 | |
Final R indexes(all data) | R1=0.0952, | R1=0.0386, | R1=0.0963, | R1=0.0560, |
wR2=0.2929 | wR2=0.0875 | wR2=0.1747 | wR2=0.1593 | |
CCDC No. | 1943993 | 1943994 | 1943992 | 1943991 |
Fig.5 Emission spectra(A) and histogram of fluorescence intensity(B) of complex 1 in aqueous solution containing different antibiotics a. Thiamphenicol; b. H2O; c. amoxicillin; d. sulfathiazole; e. sulfadiazine; f. roxithromycin; g. azithromycin; h. penicillin; i. sulfadimidine; j. ornidazole; k. metronidazole.
Fig.6 Emission spectra(A) and histogram of fluorescence intensity(B) of complex 1 in different concentrations of metronidazole solution c(Metronidazole)/(mol·L-1): a. 0; b. 10-6; c. 10-5; d. 10-4; e. 10-3; f. 10-2.
Fig.7 Emission spectra(A) and histogram of fluorescence intensity(B) of complex 1 in solution containing different metal ions a. Pb2+; b. Al3+; c. Cu2+; d. Na+; e. Ba2+; f. Ni2+; g. K+; h. Ag+; i. Mg2+; j. H2O; k. Li2+; l. Cd2+; m. Co2+; n. Ca2+; o. Zn2+; p. Cr3+; q. Fe3+.
Fig.8 Emission spectra(A) and histogram of fluorescence intensity(B) of complex 1 in different concentrations of Fe3+ ions solution. c(Fe3+)/(mol·L-1): a. 0; b. 10-7; c. 10-6; d. 10-5; e. 10-4; f. 10-3; g. 10-2.
Fig.9 Time-dependent UV-Vis absorption spectra for degradation of RhB using complex 4 t/min: a. 0; b. 10; c. 20; d. 30; e. 40; f. 50; g. 60; h. 70; i. 80; j. 90.
Fig.10 Time-dependent UV-Vis absorption spectra for degradation of RhB with H2O2(A), RhB with complex 4+H2O2(B) and the degradation rate of RhB under different conditions(C) (A), (B) t/min: a. 0; b. 10; c. 20; d. 30; e. 40; f. 50; g. 60; h. 70; i. 80; j. 90. (C) a. Complex 4+RhB; b. H2O2+RhB; c. complex 4+H2O2+RhB.
[1] |
Zhou H. C., Long J. R., Yaghi O. M., Chem. Rev., 2012,112(2), 673— 674
doi: 10.1021/cr300014x URL |
[2] |
Furukawa H., Cordova K. E., O’Keeffe M., Yaghi O. M., Science, 2013,341(6149), 1230444
doi: 10.1126/science.1230444 URL |
[3] |
Kurmoo M., Chem. Soc. Rev., 2009,38(5), 1353— 1379
doi: 10.1039/b804757j URL |
[4] |
Pal A., Chand S., Boquera J. C., Lloret F., Lin J. B., Pal S. C., Das M. C., Inorg. Chem., 2019,58(9), 6246— 6256
doi: 10.1021/acs.inorgchem.9b00471 URL |
[5] |
Zhang Y. M., Yuan S., Day G., Wang X., Yang X. Y., Zhou H. C., Coord. Chem. Rev., 2018,354, 28— 45
doi: 10.1016/j.ccr.2017.06.007 URL |
[6] | Wu S., Min H., Shi W., Cheng P., Adv. Mater., 2019,e1805871 |
[7] |
Mason J. A., Oktawiec J., Taylor M. K., Hudson M. R., Rodriguez J., Bachman J. E., Gonzalez M. I., Cervellino A., Guagliardi A., Brown C. M., Llewellyn P. L., Masciocchi N., Long J. R., Nature, 2015,527(7578), 357— 361
doi: 10.1038/nature15732 URL |
[8] | Li B., Wen H. M., Yu Y., Cui Y., Zhou W., Chen B., Qian G., Mater. Today Nano, 2018,2, 21— 49 |
[9] | Jiao L., Wang Y., Jiang H. L., Xu Q., Adv. Mater., 2018,30(37), e1703663 |
[10] |
Dhakshinamoorthy A., Li Z. H., Garcia H., Chem. Soc. Rev., 2018,47(22), 8134— 8172
doi: 10.1039/C8CS00256H URL |
[11] |
Zhang P. F., Yang G. P., Li G. P., Yang F., Liu W. N., Li J. Y., Wang Y. Y., Inorg. Chem., 2019,58(20), 13969— 13978
doi: 10.1021/acs.inorgchem.9b01954 URL |
[12] |
Wang W., Gong N., Yin H., Zhang B., Guo P., Liu B., Wang Y. Y., Inorg. Chem., 2019,58(15), 10295— 10303
doi: 10.1021/acs.inorgchem.9b01465 URL |
[13] |
Ebrahim F. M., Nguyen T. N., Shyshkanov S., Gladysiak A., Favre P., Zacharia A., Itskos G., Dyson P. J., Stylianou K. C., J. Am. Chem. Soc., 2019,141(7), 3052— 3058
doi: 10.1021/jacs.8b11907 URL |
[14] |
Guo F., Inorg. Chem. Commun., 2019,102, 108— 112
doi: 10.1016/j.inoche.2019.02.026 URL |
[15] | Li Y., Wei Z., Zhang Y., Guo Z., Chen D., Jia P., Chen P., Xing H ., ACS Sustainable Chemistry & Engineering, 2019,7(6), 6196— 6203 |
[16] |
Tan L., Fan T., Xia T., Cui Y., Yang Y., Qian G ., J. Solid State Chem., 2019,272, 55— 61
doi: 10.1016/j.jssc.2019.01.027 URL |
[17] |
Zhu X. D., Zhang K., Wang Y., Long W. W., Sa R. J., Liu T. F., Lu J., Inorg. Chem., 2018,57(3), 1060— 1065
doi: 10.1021/acs.inorgchem.7b02471 URL |
[18] | Li Z., Li R., Li X., Chem. J. Chinese Universities, 2018,39(11), 2363— 2371 |
( 李铮, 李睿, 李夏 . 高等学校化学学报, 2018,39(11), 2363— 2371) | |
[19] |
Xiao J., Liu J., Gao X., Ji G., Wang D., Liu Z ., Sens. Actuators B:Chem., 2018,269, 164— 172
doi: 10.1016/j.snb.2018.04.129 URL |
[20] |
Yan X. L., Ma D. Y., Inorg. Chem. Commun., 2019,104, 31— 35
doi: 10.1016/j.inoche.2019.03.025 URL |
[21] |
Sun Y. Q., Zhong J. C., Ding L., Chen Y. P., Dalton Trans., 2015,44(26), 11852— 11859
doi: 10.1039/C5DT01454A URL |
[22] |
Zhang Y. Q., Blatov V. A., Lv X. X., Tang D. Y., Qian L. L., Li K., Li B. L., Acta Crystallogr. C: Struct. Chem., 2019,75(7), 960— 968
doi: 10.1107/S205322961900826X URL |
[23] | Wang C., Liu X. M., Zhang M., Geng Y., Zhao L., Li Y. G., Su Z. M., ACS Sustainable Chemistry & Engineering, 2019,7(16), 14102— 14110 |
[24] |
Munoz M., Garcia-Erce J. A., Remacha A. F., J. Clin. Pathol., 2011,64(4), 281— 286
doi: 10.1136/jcp.2010.079046 URL |
[25] |
Zhang Q. Q., Ying G. G., Pan C. G., Liu Y. S., Zhao J. L., Environmental Science & Technology, 2015,49(11), 6772— 6782
doi: 10.1021/acs.est.5b00729 URL |
[26] |
Liu W. N., Tong W. Q., Ma L. L., Wang Y., Wang J. M., Hou L., Wang Y. Y., Dalton Trans., 2019,48(22), 7786— 7793
doi: 10.1039/C9DT00933G URL |
[27] |
Du Y., Yang H. Y., Shao C. Y., Liu J. W., Yan Y. T., Yu L. X., Zhu D. Q., Huang C. N., Yang L. R., J. Solid State Chem., 2019,277, 564— 574
doi: 10.1016/j.jssc.2019.07.012 URL |
[28] |
Zhou Y., Yang Q., Zhang D., Gan N., Li Q., Cuan J ., Sens. Actuators B: Chem., 2018,262, 137— 143
doi: 10.1016/j.snb.2018.01.218 URL |
[29] |
Wei F. H., Chen D., Liang Z., Zhao S. Q., Luo Y., RSC Adv., 2017,7(73), 46520— 46528
doi: 10.1039/C7RA09243A URL |
[30] |
Zheng T. R., Qian L. L., Li M., Wang Z. X., Li K., Zhang Y. Q., Li B. L., Wu B., Dalton Trans., 2018,47(27), 9103— 9113
doi: 10.1039/C8DT01685B URL |
[31] |
Xu Q. W., Wang Q. S., Li S. S., Li X., RSC Adv., 2019,9(29), 16305— 16312
doi: 10.1039/C9RA01496A URL |
[32] | Sheldrick G. M., SHELXS-97, Program for Crystal Structure Refinement, University of Göttingen, Göttingen, 1997 |
[33] | Sheldrick G. M., SHELXL-97, Program for Crystal Structure Solution, University of Göttingen, Göttingen, 1997 |
[34] | Hou B. W., Li K., Chinese J. Inorg. Chem., 2017,33(6), 1007— 1014 |
( 候不唯, 李恺. 无机化学学报, 2017,33(6), 1007— 1014) |
[1] | 薛雅荣, 李洪伟, 吴玉清. 基于聚乙烯亚胺碳纳米点的桑色素比率型荧光探针[J]. 高等学校化学学报, 2020, 41(7): 1531-1536. |
[2] | 王非凡, 王松博, 姚柯奕, 张蕾, 杜威, 程鹏高, 张建平, 唐娜. 量子点自修饰TiO2p-n同质结的构建及光催化性能[J]. 高等学校化学学报, 2020, 41(7): 1615-1624. |
[3] | 黄加玲,刘凤娇,王婷婷,刘翠娥,郑凤英,王振红,李顺兴. 氮硫共掺杂碳量子点对胃液pH值的精确检测[J]. 高等学校化学学报, 2020, 41(7): 1513-1520. |
[4] | 徐文艺,冯乙巳. 2,3-丁二酮介导的CF3SO2Na与烯烃的氧化三氟甲基化反应[J]. 高等学校化学学报, 2020, 41(7): 1567-1574. |
[5] | 彭绍琴, 李紫琴, 黄铭涛, 李越湘. 盐酸后处理制备高效制氢光催化剂Zn2In2S5[J]. 高等学校化学学报, 2020, 41(7): 1677-1683. |
[6] | 余仁鹏, 韩梅, 张梦瑶, 刘建芳, 李末霞, 胡家文. 分形等离激元黑金的热电子催化性能[J]. 高等学校化学学报, 2020, 41(7): 1638-1644. |
[7] | 祝玉鑫, 欧阳杰, 宋艳华, 唐盛, 崔言娟. 硼碘共掺杂氮化碳的制备及光解水制氢性能[J]. 高等学校化学学报, 2020, 41(7): 1645-1652. |
[8] | 成荣敏,徐虹,单瑞平,詹从红. La掺杂钛酸钙光催化剂在可见光下分解水制氢的影响因素[J]. 高等学校化学学报, 2020, 41(6): 1345-1351. |
[9] | 林桂锋,郭景富,何腾飞,任爱民. 供电子基团修饰对NNI-R系列分子光物理性质的影响[J]. 高等学校化学学报, 2020, 41(6): 1277-1286. |
[10] | 白翠婷, 岳仁叶, 罗列高, 马楠. 基于双色荧光传感器的癌细胞成像及microRNA定量检测[J]. 高等学校化学学报, 2020, 41(6): 1252-1261. |
[11] | 王蕊,徐梅,谢家文,叶盛英,宋贤良. 水热反应条件对多孔球状Bi2WO6光催化剂结构及性能的影响[J]. 高等学校化学学报, 2020, 41(6): 1320-1328. |
[12] | 梁钰昕, 赵容, 梁馨月, 方晓红. 细胞膜上信号转导蛋白的单分子成像与分析[J]. 高等学校化学学报, 2020, 41(6): 1127-1138. |
[13] | 赵子一,郑洪芝,徐雁. 晶态纳米纤维素的多色圆偏振荧光性能[J]. 高等学校化学学报, 2020, 41(5): 1120-1126. |
[14] | 曹锰, 柳阳, 张尚玺, 王振希, 徐胜. 壳聚糖钴配合物的合成及光催化产氢性能[J]. 高等学校化学学报, 2020, 41(4): 735-741. |
[15] | 左晓玲, 吴翀, 黄安荣, 罗姣莲, 李竹玉, 王梦, 周颖, 余洪钠, 郭建兵. 可见光响应的荧光增白剂基多功能光引发体系[J]. 高等学校化学学报, 2020, 41(4): 811-820. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||